

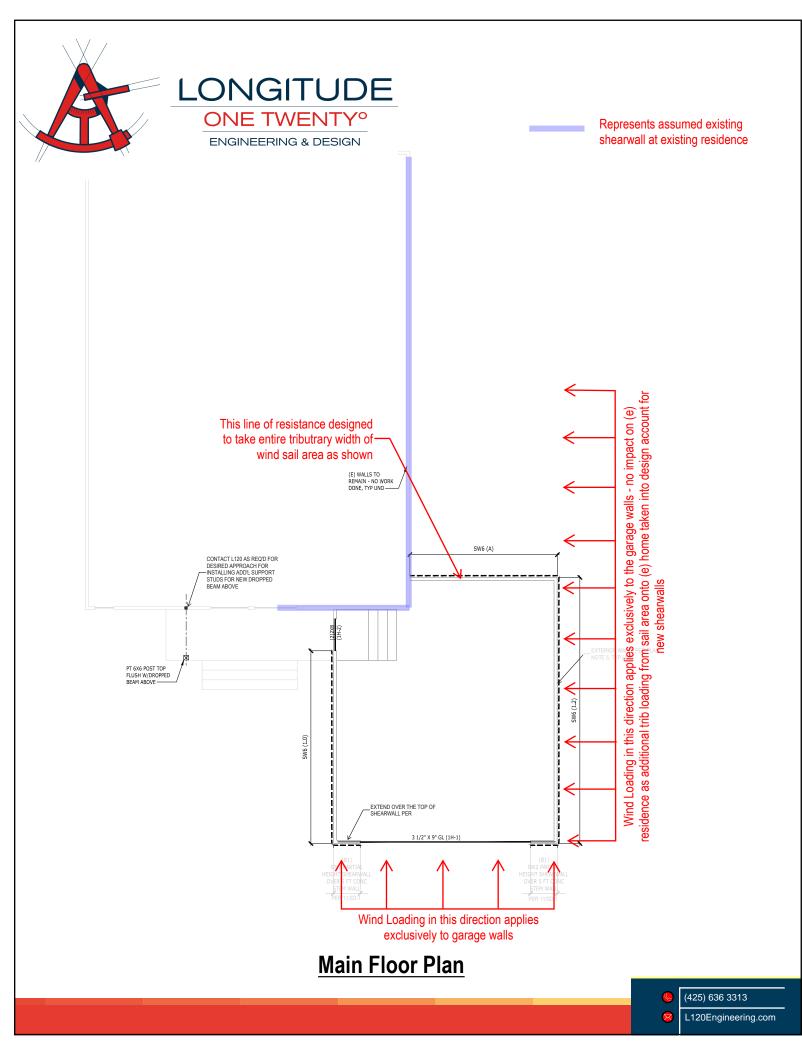
Structural Package for:

Maksimchuk Garage 7847 SE 40th St Mercer Island, WA 98040

Project No: \$230918-1

October 20, 2023

STRUCTURAL ENGINEER L120 ENGINEERING & DESIGN 13150 91ST PL NE KIRKLAND, WA 98034 CONTACT: MANS THURFJELL, PE PHONE: 425-636-3313 MTHURFJELL@L120ENGINEERING.COM


DESIGN CRITERIA & STRUCTURAL NARRATIVE

Structural scope of work consists of new enclosed garage over what was previously a carport and existing foundation system.

The lateral design criteria was determined to be governed exclusively by wind loading. The analysis to determine lateral loading to the new garage was taken conservatively such that the existing residence's lateral force resisting system does not need to be altered.

See attached plans that show the design loading diagrams for lateral loading.

Project Number:	Plan Name:	Sheet Number:
S230918-1 Maksimchuk Addition		DC
Engineer:	Specifics:	Date:
НК	Design Criteria	10/20/2023

Gravity Criteria:

BLUE = Review and update as required - Typical Input

Code: IBC 2018

ROOF SYSTEM						
Live Load:						
Snow	25.0	psf				
Dead Load:						
Deau Loau.						
Composite Roofing	2.0	psf				
19/32" Plywood Sheathing	2.5	psf				
Trusses at 24" o.c.	3.0	psf				
Insulation	1.8	psf				
(2) Layers 5/8" GWB	4.4	psf				
Misc or Tile Roof	1.3	psf				
Total	15.0	psf				

EXTERIOR WALL SYSTEM						
2x6 at 16" o.c.	1.7	psf				
Insulation	1.0	psf				
1/2" Plywood Sheathing	1.5	psf				
(2) layers 5/8" GWB	4.4	psf				
Misc or Brick Covered Wall	3.4	psf				
Total	12.0	psf				

SEISMIC PARAMET	FRS

Code Reference: ASCE 7-16 R = 6.5 Be Mapped Spectral Acceleration, Ss = 1.58 Mapped Spectral Acceleration, S1 = 0.64 Soil Site Class = D

WIND PARAMETERS:

Code Reference: ASCE 7-16 Basic Wind Speed (3 second Gust) = 100 mph Exposure : **B** Kzt = 1.60

SOIL PARAMETERS:

Soil Bearing Pressure = 1,500 psf competent native soil or structural fill 1/3 increase for short-term wind or seismic loading is acceptable Frost Depth = 18 in

Lateral Wall Pressures:

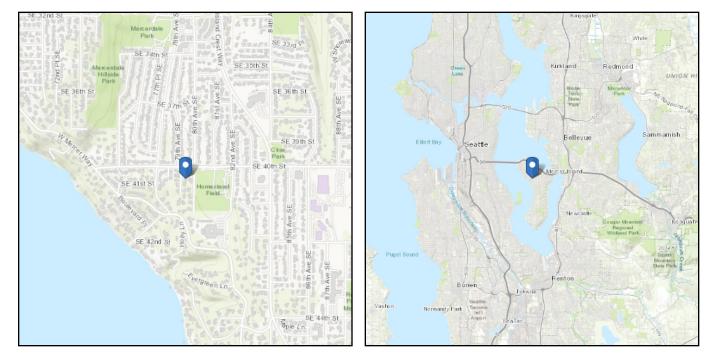
Unrestrained Active Pressure = 35 pcf Cantilevered walls Restrained Active Pressure = 50 pcf Plate Wall Design/Tank Walls Passive Pressure = 250 pcf Soil Friction Coeff. = 0.35

FLOOR SYSTEM							
Live Load:							
Residential	40.0	psf					
Dead Load:							
Flooring 3.0 psf							
3/4" T & G Plywood	2.5	psf					
Floor Joists at 16" o.c.	2.5	psf					
Insulation	0.5	psf					
(1) Layers 5/8" GWB	2.2	psf					
Misc or Tile Flooring	1.3	psf					
Total 12.0 psf							

INTERIOR WALL SYSTEM							
2x4 at 16" o.c. 1 1 psf							
	1.1	psf					
Insulation	psf						
(2) Layers 5/8" GWB	4.4	psf					
Misc 2.0 psf							
Total 8.0 psf							

Bearing Wall System, Wood Structural Panel Walls

Mercer Island, Washington


Address: 7847 SE 40th St

98040

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-22Risk Category:IISoil Class:Default

Latitude: 47.573977 Longitude: -122.232992 Elevation: 193.89209466583293 ft (NAVD 88)

Wind

Results:

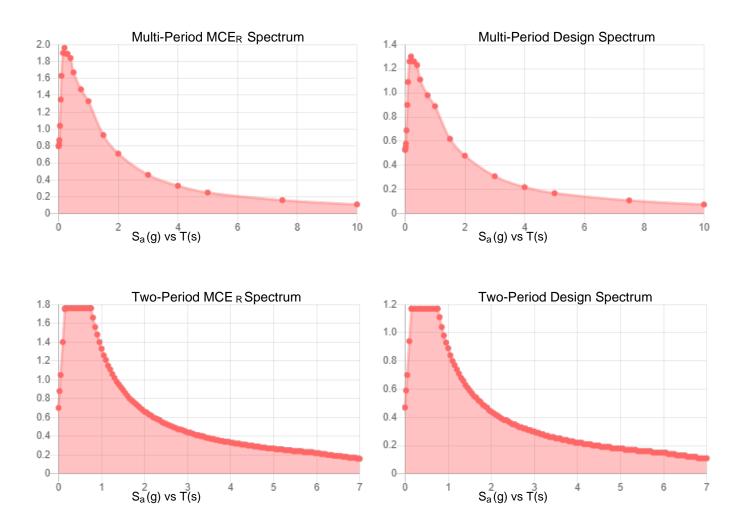
Wind Speed	98 Vmph
10-year MRI	67 Vmph
25-year MRI	74 Vmph
50-year MRI	78 Vmph
100-year MRI	83 Vmph
300-year MRI	92 Vmph
700-year MRI	98 Vmph
1,700-year MRI	105 Vmph
3,000-year MRI	109 Vmph
10,000-year MRI	118 Vmph
100,000-year MRI	136 Vmph
1,000,000-year MRI	154 Vmph

Data Source:

Date Accessed:

ASCE/SEI 7-22, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2 Thu Oct 19 2023

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-22 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years). Values for 10-year MRI, 25-year MRI, 50-year MRI and 100-year MRI are Service Level wind speeds, all other wind speeds are Ultimate wind speeds.


Site is not in a hurricane-prone region as defined in ASCE/SEI 7-22 Section 26.2.

Default

Site Soil Class: Results:				
PGA M:	0.73	T_L :	6	
S _{MS} :	1.76	S _s :	1.58	
S _{M1} :	1.33	S ₁ :	0.64	
S _{DS} :	1.17	V _{S30} :	260	
S _{D1} :	0.89			

Seismic Design Category: D

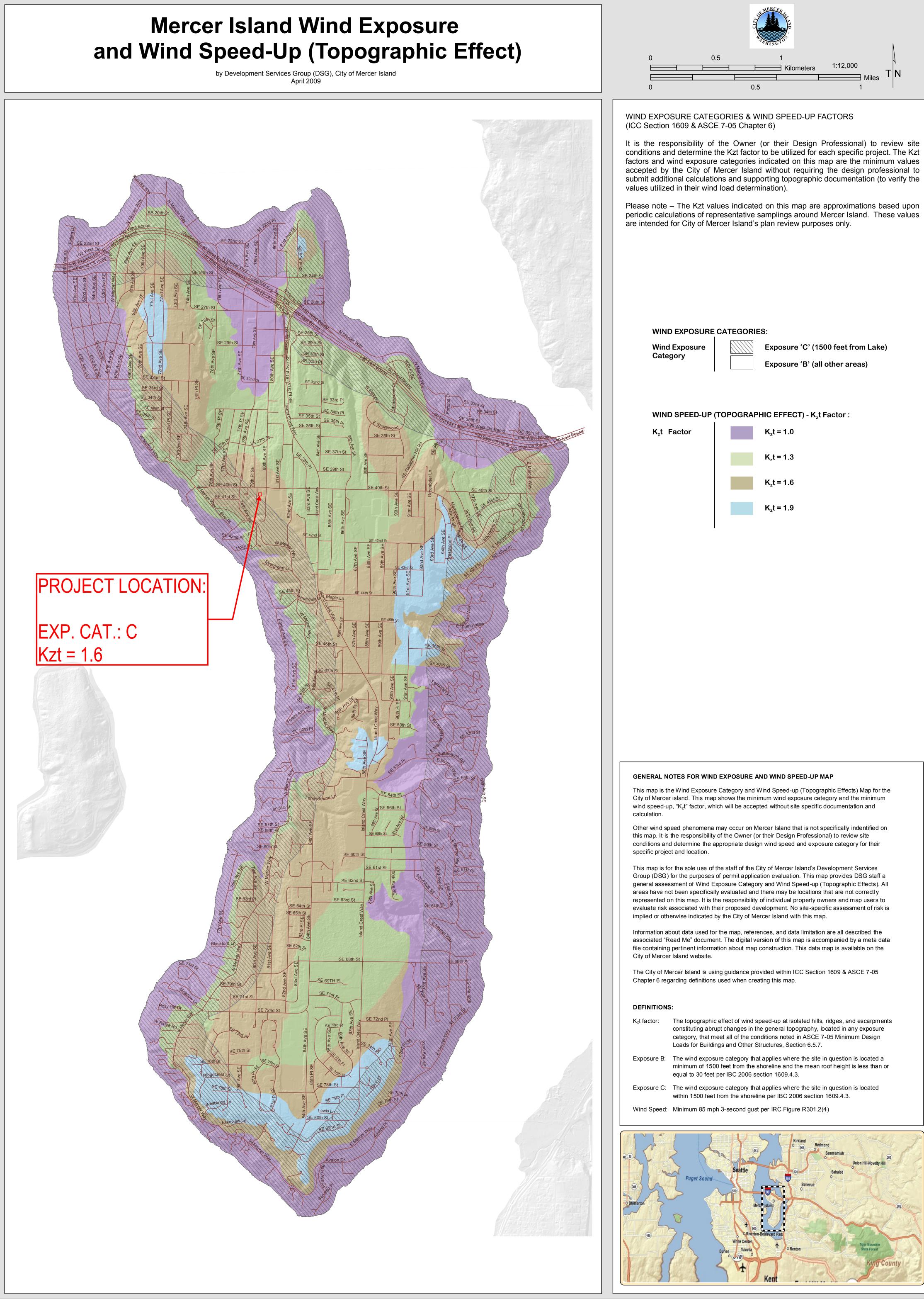
 $\label{eq:MCER} \mbox{Vertical Response Spectrum} \\ \mbox{Vertical ground motion data has not yet been made} \\ \mbox{available by USGS.} \\$

Design Vertical Response Spectrum Vertical ground motion data has not yet been made available by USGS.

Data Accessed:

Thu Oct 19 2023

Date Source:


USGS Seismic Design Maps based on ASCE/SEI 7-22 and ASCE/SEI 7-22 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-22 Ch. 21 are available from USGS.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

FRAMING CALCULATIONS

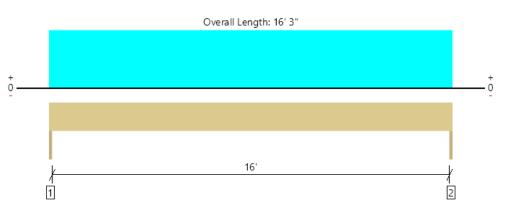
BEAM REFERENCE PER PLAN

Maksimchuk Remodel

Roof and 1st Floor						
Member Name	Results	Current Solution	Comments			
1H-1 (Garage Header)	Passed	1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam				
RB-1 (Dropped Beam)	Passed	1 piece(s) 5 1/2" x 7 1/2" 24F-V4 DF Glulam				
1H-2	Passed	2 piece(s) 2 x 8 DF No.2				

ForteWEB Software Operator
Harrison Kliegl
L120 Engineering
(425) 636-3313
hkliegl@I120engineering.com

Job Notes



10/20/2023 6:33:46 PM UTC ForteWEB v3.6 File Name: Maksimchuk Remodel

MEMBER REPORT

Roof and 1st Floor, 1H-1 (Garage Header) 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1048 @ 0	3413 (1.50")	Passed (31%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	936 @ 10 1/2"	6400	Passed (15%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	4259 @ 8' 1 1/2"	10125	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.307 @ 8' 1 1/2"	0.542	Passed (L/634)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.529 @ 8' 1 1/2"	0.813	Passed (L/369)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 6.8% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 16' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	439	609	1048	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	439	609	1048	None

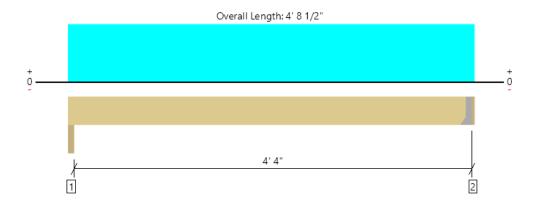
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 3"	N/A	7.7		
1 - Uniform (PSF)	0 to 16' 3"	3'	15.5	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

MEMBER REPORT

Roof and 1st Floor, RB-1 (Dropped Beam) 1 piece(s) 5 1/2" x 7 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1586 @ 4' 7"	5363 (1.50")	Passed (30%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1141 @ 3' 11 1/2"	8381	Passed (14%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	1767 @ 2' 4 1/4"	11818	Passed (15%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.011 @ 2' 4 1/4"	0.149	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.018 @ 2' 4 1/4"	0.223	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 0.3% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 4' 5 1/2".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column - HF	3.00"	3.00"	1.50"	674	1001	1674	None
2 - Hanger on 7 1/2" HF Ledger	1.50"	Hanger ¹	1.50"	673	1001	1673	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• 1 See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Connector: Simpson Strong-Tie

2 - Face Mount Hanger Connector not found N/A N/A N/A N/A	Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
			J				

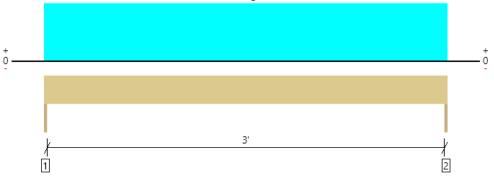
• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 4' 7"	N/A	10.0		
1 - Uniform (PSF)	0 to 4' 8 1/2" (Front)	17'	16.2	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

MEMBER REPORT

Roof and 1st Floor, 1H-2 2 piece(s) 2 x 8 DF No.2

Overall Length: 3' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1127 @ 0	2813 (1.50")	Passed (40%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	621 @ 8 3/4"	3002	Passed (21%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	915 @ 1' 7 1/2"	2667	Passed (34%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.007 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.011 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 2% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	436	691	1127	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	436	691	1127	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	5.5		
1 - Uniform (PSF)	0 to 3' 3"	17'	15.5	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

LATERAL CALCULATIONS

Lateral analysis determined to be governed by wind loading. Wind sail areas taken conservatively to load the garage walls as heavily as possible to prove adequacy and isolation of existing lateral system at main house.

Project Number:	Plan Name:	Sheet Number:		
S230918-1	Maksimchuk Addition	DC		
Engineer:	Specifics:	Date:		
НК	Design Criteria	10/20/2023		

Gravity Criteria:

BLUE = Review and update as required - Typical Input

Live Load:

Code: IBC 2018

psf

ROOF SYSTE	ROOF SYSTEM								
Live Load:		ĉ							
Snow	25.0	psf							
Dead Load:									
Composite Roofing	2.0	psf							
19/32" Plywood Sheathing	2.5	psf							
Trusses at 24" o.c.	3.0	psf							
Insulation	1.8	psf							
(2) Layers 5/8" GWB	4.4	psf							
Misc or Tile Roof	1.3	psf							
Total	15.0	psf							

EXTERIOR WALL S	EXTERIOR WALL SYSTEM								
2x6 at 16" o.c.	1.7	psf							
Insulation	1.0	psf							
1/2" Plywood Sheathing	1.5	psf							
(2) layers 5/8" GWB	4.4	psf							
Misc or Brick Covered Wall	3.4	psf							
Total	12.0	psf							

Total	12.0	psf
Misc or Tile Flooring	1.3	psf
(1) Layers 5/8" GWB	2.2	psf
Insulation	0.5	psf
Floor Joists at 16" o.c.	2.5	psf
3/4" T & G Plywood	2.5	psf
Flooring	3.0	psf
d Load:		
		-

FLOOR SYSTEM

40.0

Residential

INTERIOR WALL SYSTEM									
1 1	nef								
1.1	psf psf								
	psf								
	psi								
	psf								
	L SYST 1.1 0.5 4.4 2.0 8.0								

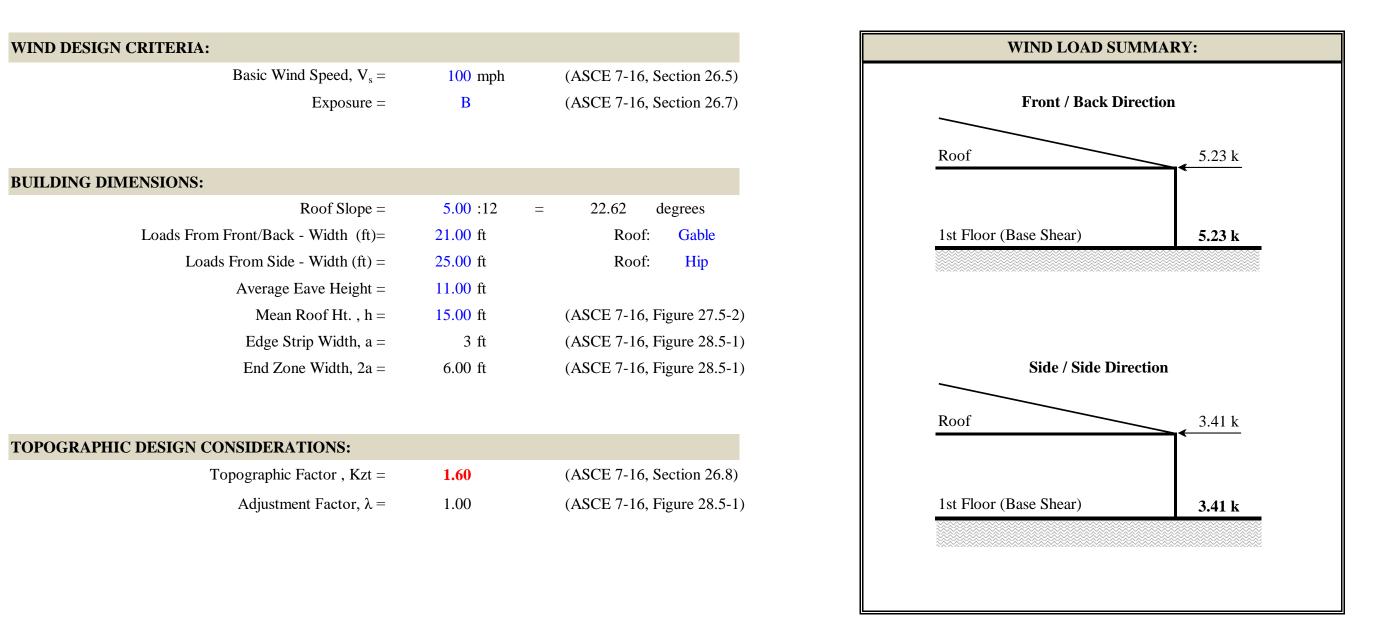
SEISMIC PARAMETERS:

 $\begin{array}{rcl} \mbox{Code Reference: ASCE 7-16} \\ R = & 6.5 & \mbox{Bearing Wall System, Wood Structural Panel Walls} \\ \mbox{Mapped Spectral Acceleration, S1 = & 0.64} \\ \mbox{Soil Site Class = & D} \end{array}$

WIND PARAMETERS:

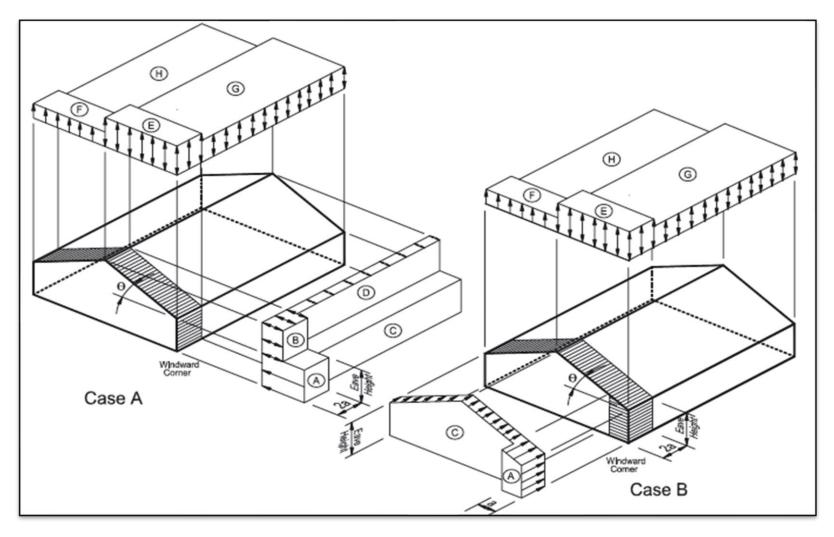
Code Reference: ASCE 7-16 Basic Wind Speed (3 second Gust) = 100 mph Exposure : **B** Kzt = 1.60

SOIL PARAMETERS:


Soil Bearing Pressure = 1,500 psf competent native soil or structural fill 1/3 increase for short-term wind or seismic loading is acceptable Frost Depth = 18 in

Lateral Wall Pressures:

Unrestrained Active Pressure = 35 pcf Cantilevered walls Restrained Active Pressure = 50 pcf Plate Wall Design/Tank Walls Passive Pressure = 250 pcf Soil Friction Coeff. = 0.35


Project Number:	Plan:	Sheet Number:
S230918-1	Maksimchuk Addition	L1
Engineer:	Specifics:	Date
НК	WIND FORCES	10/20/2023

IBC 2018 Section 1609 → ASCE 7-16 Section 28.5 - Simplified Procedure → Main Wind-Force Resisting System

SIMPLIFIED DESIGN WIND PRESSURE, P_{S30} (psf) (Exposure B at $h = 30 ft$.)												
Basic Wind	Roof			ZONES*								
Speed, Vs	Angle	Load Case		Horizonta	l Pressure			Vertic	al Presssure		Over	hang
(mph)	(Degrees)		Α	В	С	D	Ε	F	G	Н	E _{OH}	G _{OH}
100	22.62	А	19.90	3.20	14.40	3.30	-8.80	-12.00	-6.40	-9.70	-16.50	-14.00

* Values Interpolated from Figure 28.5-1 ASCE 7-16

Project Number:	Plan:	Sheet Number:
S230918-1	Maksimchuk Addition	L1
Engineer:	Specifics:	Date
НК	WIND FORCES	10/20/2023

IBC 2018 Section 1609 \rightarrow ASCE 7-16 Section 28.5 - Simplified Procedure \rightarrow Main Wind-Force Resisting System

	HORIZONT	MIN. LO	ADS (psf)		
	$p_{s=}\lambda^{*}$	Per ASCE	7-16, 28.5		
E	nd zone]	Interior zone		XX7 11
A (Wall)	B (Roof)	C (Wall)	D (Roof)	Roof	Wall
31.84	5.12	23.04 5.28		8.0	16.0

ASD WIND FORCES: FRONT / BACK LOADING DIRECTION											
	Width	Usight		End Zone		Interior zone		Force	Min Force		
	Location	vv lutil	Height	Plane	Length	Pressure (W)	Length	Pressure (W)	0.6 ω*W	0.6 ω*W	
		(ft)	(ft)		(ft)	(psf)	(ft)	(psf)	(kips)	(kips)	
[T_	"Height" of Roof to Plate (see note)	21.0	7.00	(roof)	6.0	31.84	15.0	23.04	2.93	0.92	
ROOF	Plate to Mid 1st LVL	21.0	5.50	(wall)	6.0	31.84	15.0	23.04	2.30	1.44	
24								$\Sigma =$	5.23	2.36	
	Total Wind Base Shear (kips)							5.23	2.36		

ASD WIND FORCES: SIDE / SIDE LOADING DIRECTION										
		Width	Height		E	nd Zone	I	interior zone	Force	Min Force
	Location	wiath	neigin	Plane	Length	Pressure (W)	Length	Pressure (W)	0.6 ω*W	0.6 ω*W
		(ft)	(ft)		(ft)	(psf)	(ft)	(psf)	kips	kips
)F	"Height" of Roof to Plate (see note)	25.0	7.00	(roof)	6.0	5.12	19.0	5.28	0.72	1.09
ROO	Plate to Mid 1st LVL	25.0	5.50	(wall)	6.0	31.84	19.0	23.04	2.70	1.72
μ. μ								$\Sigma =$	3.41	2.81
							Total V	Wind Base Shear (kins)	3 /1	2.81

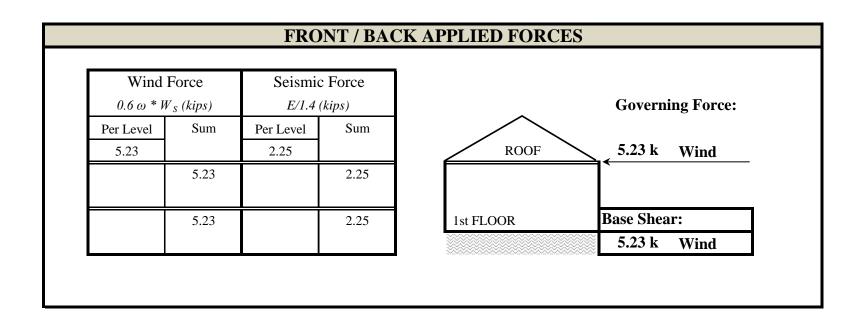
Total Wind Base Shear (kips)3.412.81

Project Number:	Plan Name:	Sheet Number:
S230918-1	Maksimchuk Addition	L2
Engineer:	Specifics:	Date:
НК	SEISMIC WEIGHTS	10/20/2023

Unit Weights (psf)			Seismic Weights include: (REF §12.7)
Roof:	15	psf	25% of storage Live loads
Floor:	12	psf	Actual partition weight or 10 psf min if applicable
Exterior Wall:	12	psf	Operating weight of permenant equipment
Interior Wall:	8	psf	20% of uniform design snow loads for areas where $Pf > 30 psf$

LEVEL	ITEM	AREA / LENGTH	HEIGHT (ft)	UNIT WEIGHT (psf)		Item Total Weight. (lbs)	Level Sub- Total (kips)	Average Pressure (psf)
ROOF								
	Roof	740	1.09	15	=	12,070		
	Ext. Wall Below	82	5.50	12	=	5,412		
	Corridor Wall Below	0	5.00	8	=	0		
							17	24

STRUCTURE WEIGHT FOR SEISMIC BASE SHEAR:	17	kips
--	----	------


TOTAL WEIGHT OF STRUCTURE:17(Includes Basement Dead Load)

kips

Project Number:	Plan Name:		_		Sheet Number:
S230918		Maksimo	<u>huk A</u>	ddition	
Engineer:	Specifics:	<u> </u>			Date:
HK			IC FO		10/20/202
Equivelant Lateral Fo	orce Analysis per IBC 2018	$1613.1 \rightarrow AS$	SCE 7-16	Table 12.6	\rightarrow Sec 12.8
Data generated by	v: Seismic Design Values for	or Buildings '	'Java Gr	ound Moti	on Parameter Calculation"
		~			
		$S_1 =$	0.64		Maps
		$S_{DS} =$	1.17		(ASCE 7 EQ 11.43)
		$S_{D1} =$	0.89		(ASCE 7 EQ 11.44)
	Seismic Importar	nce Factor =	1.00		(ASCE 7 Table 11.5-1)
	Seismic Design		D		(ASCE 7 Table 11.6-1 & 11.6.2)
	Response Modification		6.5		(ASCE 7 Table 12.2-1)
Seismic	Force-Resisting System De	escription = A	A.13 - ligl	ht framed w	valls
	Building 1	Height, h _n =	15.0	ft	
	Building Period Coeff	ficient, $C_T =$	0.020		(ASCE 7 Table 12.82)
	Approx. Fundamental	Period, $T_a =$	0.152	$(C_{T^*}(h_n^{0.75}))$	⁵) (ASCE 7 EQ 12.87)
	Approx. Fundamental l	Period, $T_L =$	6.0	sec	(ASCE 7 11.4.5)
Seismic Response C	oefficient				
	$C_s = S_{DS}/(R/I)$	$C_s =$	0.180		(ASCE 7 EQ 12.82)
Seismic Response C	oefficient, Maximum				
-	$C_{s, MAX} = S_{D1}/(T*R/I)$	$C_{s, MAX} =$	0.898	$T \leq T_{\rm L}$	(ASCE 7 EQ 12.83)
	$C_{s, MAX} = S_{D1} T_{L} / (T^{2} R / R)$	$C_{s, MAX} =$	NA	$T > T_L$	(ASCE 7 EQ 12.84)
Seismic Response C	oefficient, Minimum	.,	. –	2	
•	$C_{s, MIN} = 0.01$	$C_{s, MIN} =$	0.010		(ASCE 7 EQ 12.85)
	$C_{s, MIN} = 0.5 S_1 / (R/I)$	$C_{s, MIN} =$	0.049	if S1 > 0	.6 (ASCE 7 EQ 12.86)
		$C_s =$	0.180		
	Dea	$C_s =$ d Load W =	0.180 17	kips	
		V = Cs W =	3.1	kips	(ASCE 7 EQ 12.81)
		$Q_E = V =$	3.1	kips	(ASCE 7 EQ 12.4-3)
		ρ=	1.0	1	(ASCE 7 12.3.4.2)
	E	$Q_{\rm H} = \rho Q_{\rm E}^{\rm P} =$	3.1	kips	(ASCE 7 EQ 12.4-3)
	Ev =	$= .2 S_{\rm DS} D =$	0.23	x D kip	
	Factor for Alternate Basic	c Load conbin		-	
		$E_{\rm H}/1.4 =$	2.2	kips	IBC 2018 1605.3.2
		k =	1	_	(ASCE 7 12.8.3)

	VERTICAL DISTRIBUTION (Per ASCE 7 - 12.8.3)									
		Story	Total	Story		Vert Dist	Story	Factored Story		
	Area	Height	Height	Weight		Factor	Force	Force (ASD)		
Floor		Н	h _x	W _x	w _x h _x ^k	Cvx	Fx	$Fx \ \rho/1.4 = E_H/1.4$		
	(ft^2)	(ft)	(ft)	(kips)	(k-ft)		(kips)	(kips)		
Roof	740	11.00	11.00	17	192	1.00	3.1	2.2		
				Sum =	192	1.000	3.1	2.2		

Project Number:	Plan Name:	Sheet Number:
S230918-1	Maksimchuk Addition	L4
Engineer:	Specifics:	Date:
НК	DESIGN LOADS	10/20/2023

Wind] 0.6 ω * W		Seismic <i>E/1.4</i> (Governing Force:
Per Level	Sum	Per Level	Sum		
3.41		2.25		ROOF	3.41 k Wind
	3.41		2.25		
	3.41		2.25	1st FLOOR	Base Shear:
					3.41 k Wind

							Notes:						_											
Project Number:	Plan Name:			Sheet Number				-	with Force-Tran SDPWS 2018,	nsfer should meet a mi Table 4.3.4)	nimum height to wi	idth												
S230918-1	Maksimchuk	Addition		L	5		* Maximu	m allowed	height to width	ratio 3.5:1 for walls v	v/o openings (increa	ased shear	r				$\mathbf{RED} = \mathbf{U}$	Update Forn	nula as req	juired - Importa	nt			
Engineer:	Specifics:			Date:			design v	alues per S	DPWS 2018, T	'able 4.3.4)							BLUE =	Review and	d update as	s required - Typ	vical Input			1
НК	Shear w	valls		10/20	/2023		* Shear pa	nel height i	s height to unde	erside or roof or floor	framing.													
2nd Story Walls (From	nt - Back Direction)				Stud Species	HF														<u>ck Direction)</u>				
	"Adjusted" Story shear(kips) = 5.23 Story height (ft) = 11.00 Shear Panel height (ft) = 11.00			0	/B Direction) = /B Direction) =	Wind 0.67	IBC 2018	Equation 1	6-18								<u>Hold do</u>	wns and wi	ndow stra	<u>aps</u>				
	Total Diaphragm width (ft) = 21.00			load	balance check =	ОК																		
Story Wall Wa Mark L(f		Plate to Opening (ft)	Effective Length (ft)	Trib. Width (ft)	Percent Sharing (%)	Effective Trib. Width	Story V(kips)	Sum V(kips)	Panel Shear (plf)	Height/Width Reduction (%) R = 2*L/H	Design Panel Shear (plf)	Wall Type	Roof Trib (ft)	Story DL(klf)	Sum DL(klf)	OTM (k-ft)	RM (k-ft)	Resultant HD(kips)		1		Resultant HD	Force at Window (Kips)	Window Strap
1 1.0 17.0			17.00	10.50	1.00	10.50	2.62	2.62	154	1.00	154	SW6	10.00	0.28	0.28	28.8	27.3	0.09	flr-con	c HF	Edge	No HD	0.00	No strap
1 2.0 25.0	00		25.00	10.50	1.00	10.50	2.62	2.62	105	1.00	105	SW6	10.00	0.28	0.28	28.8	59.0	-1.24	flr-con	c HF	Edge	No HD	0.00	No strap

S = 21.00

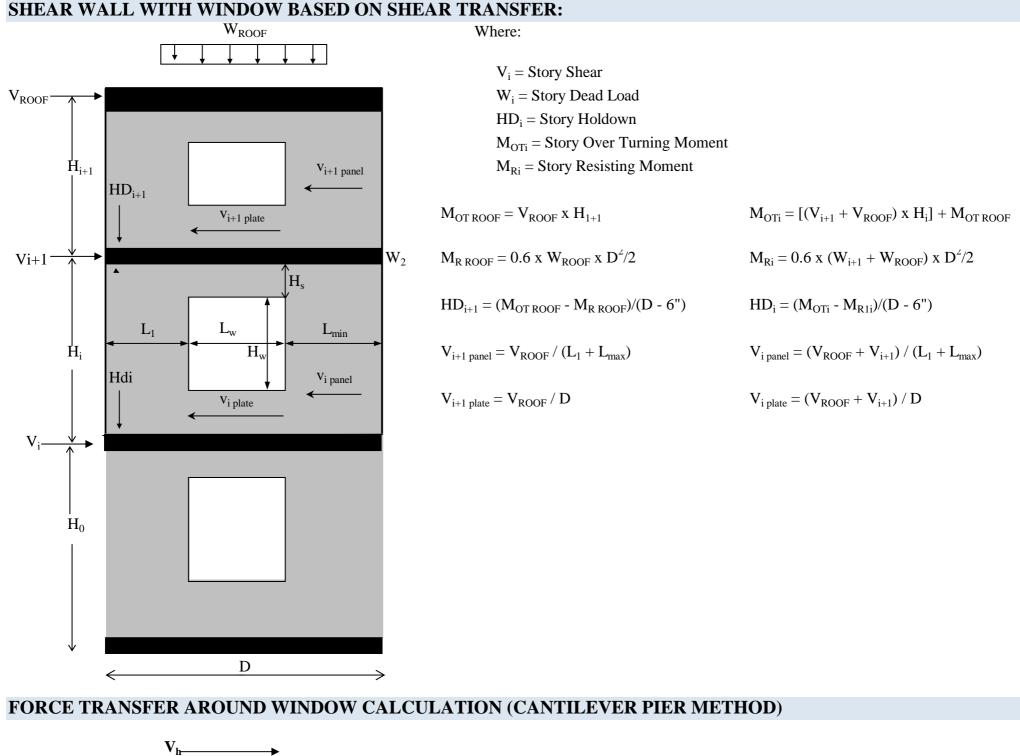
S = 42.00

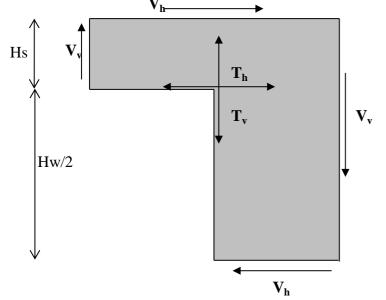
Total OSB wall length = 42.00 (feet)

Total OSB Capacity 5.23 5.23 **5.23 OK** (kips)

trap trap

		8-1	Plan Name: Specifics:	Mal	<u>ksimchuk</u>			Date:	.6		ratio of 2 * Maximur design va	designed with 2:1 at Pier (SDP) m allowed heigh alues per SDPW
2nd St	HK ory Wa	lls (Side	e / Side Direct	tion)	Shear w	<u>alls</u>		10/20	Stud Species	HF	* Shear pai	nel height is hei
			Shear P	ry shear(kips) = tory height (ft) = anel height (ft) = ngm width (ft) =	$11.00 \\ 11.00$	100% story shear YES]	Governing Force (Dead load factor (loa	· · ·	0.67		Equation 16-18 natch story shea
Story	Wall Mark	Wall L(ft)	Opening Width (ft)	Opening Height (ft)	Opening (max) to Edge (ft)	Plate to Opening (ft)	Effective Length (ft)	Trib. Width (ft)	Percent Sharing (%)	Effective Trib. Width	Story V(kips)	Sum V(kips)
1	A1	13.75					13.75	20.00	1.00	20.00	2.73	2.73
1	B1	2.50					2.50	12.50	0.50	6.25	0.85	0.85
1	B2	2.50					2.50	12.50	0.50	6.25	0.85	0.85
	S =	18.75				Total OSB wall length = (feet)	18.75		S =	32.50	4.44	4.44


ith Force-Transfer should meet a minimum height to width DPWS 2018, Table 4.3.4) **RED** = Update Formula as required - Important eight to width ratio 3.5:1 for walls w/o openings (increased shear **BLUE** = Review and update as required - Typical Input PWS 2018, Table 4.3.4) height to underside or roof or floor framing. 2nd Story Walls (Side / Side Direction) Hold downs and window straps -18 hear Height/Width Force at Window OTM RM Resultant HD/Strap to HD location HD Panel Reduction (%) Design Panel Wall Roof Story Sum Resultant Window Strap Shear (plf) R = 2*L/HShear (plf) Type Trib (ft) DL(klf) DL(klf) (k-ft) (k-ft) HD(kips) DF or HF? Edge/Interior? TYPE HD (Kips) SW62.000.16HALF-HEIGHT CONCRETE WALLHALK-HEIGHT CONCRETE WALL
 HF
 Edge
 flr-conc
 STHD14
 0.00
 No strap


 HALF-HEIGHT CONCRETE WALL
 HALK-HEIGHT CONCRETE WALL
 199 30.0 10.3 199 1.49 1.00 0.16 341 N/A 341 N/A

Warning-W Total OSB Capacity (kips)

3.41

Project		sheet number:
	Maksimchuk Addition	L7
Subject		Date
	SHEAR WALL EQUATION DIAGRAM	10/20/2023

 $V_h = v_i_{panel} x L_{max}$ $V_v = HD_i$

 $T_{h} = V_{h} (H_{w} / 2 + H_{s}) / H_{s}$

 $T_v =$ Is resisted by the continuous stud adjacent to the window.

Project Numbe			Plan Name:					Sheet Num	ber:
	<u>30918</u>	8-1		Maksi	mchuk Ad	ldition			L9
Engineer:			Specifics:					Date:	
	HK			1/2 Hei	ght concr	ete wall		10/2	0/2023
W	=	30	in					ל w	<u>}</u>
Н	=	11	ft					► V	
L	=	29	in				<u> </u>		
b_w	=	8	in		L		1		
f' _c	=	2500	psi	1	d		Wood Panel		
DL	=	200	plf		/		Height		
Force	=	Wind					Ŭ		
Load Factor	=	0.67			•	þ _w			.
Conc. Height	=	5	ft	// •	•	¥w	*		+
Wood Height	=	6	ft	$\mathbf{\mathbf{\nabla}}$	\sim	J			
Fy	=	40	ksi				Concrete	I	1
							Pier Height		
Rebar Design:									
Bar Size		=	4			Diameter	=	1	jn
Number of Bars		=	2	(Each Side)		A_s	=	0	jn²
Cover		=	2	in		d	=	27	in
Concrete Design:									
$\phi V_c = \phi \ 2 \ f'_c \ b_w \ d$		=	18.2	k	where:	f	=	0.85	
$\phi M_N = \phi A_s F_y (d$	- a/2)	=	29.8	k-lbs		$a = \underline{A_s F_y}_{0.85 f'_c b_w}$	_ =	0.94	in
Fo	r ASD Loa	nds:							
	fV_c	=	13.0	k					
	$\mathrm{f}\mathrm{M}_{\mathrm{N}}$	=	21.3	k-lbs					
Wood Design:									
Panel Shear: (Sing	le sided sh	earwall with 7/16	" sheathing and 2"	O.C. nailing ansd ((2) 5/8" A.B.)				
V = (595)W	1488	lb							
* 595 = Capacity for	r shearwall	(plf)					Controlling		L
							1488	lbs	
Holdown Design:							Use:		
							(2) 5/8 in A.B.		
STHD14 =	4165	lbs (Max Capa	icity)				(2) STHD14 Ho		
$R_m = \phi DL W^2/2$		=	5025	in-lbs			7/16" Ply Single		
V = 5025(W - 6.5)) + R_	=	1710	lbs			Nailing at 2" O.	C.	
h									

	Load Summary			
Concrete	fV_c	=	12993	lbs
	fM_N	=	1934	lbs
Wood	Panel	=	1488	lbs
	Holdown	=	1710	lbs

FOUNDATION CALCULATIONS

FOOTING REFERENCE PER PLAN

Project: Foundation calculations - 1500 psf

Location: 16" continous footing (max loading) - bearing Footing

page

Footing Size: 16.0 IN Wide x 8.0 IN Deep Continuous Footing With 8.0 IN Thick x 18.0 IN Tall Stemwall LongitudinalReinforcement: (2) Continuous #4 Bars TransverseReinforcement: #4 Bars @ 12.00 IN. O.C. (unnecessary) Section Footing Design Adequate

FOOTING PROPERTIES			LOADING	DIAGRAM			
Allowable Soil Bearing Pressure: Qs = 1							
Concrete Compressive Strength: F'c = 2							
Reinforcing Steel Yield Strength: Fy = 40							
Concrete Reinforcement Cover: c =	3 in]				
FOOTING SIZE			1				
Width: W =	16 in						
Depth: Depth =	8 in						
Effective Depth to Top Layer of Steel: d =	4.25 in						
STEMWALL SIZE			1				
Stemwall Width: 8 in							
Stemwall Height: 18 in							
Stemwall Weight: 150 pcf					8 in		
FOOTING CALCULATIONS			1				
TOOTING CALCOLATIONS							
Bearing Calculations:							
Ultimate Bearing Pressure:	Qu =	1388 psf					
Effective Allowable Soil Bearing Pressure:	Qe =	1400 psf					
Width Required:	Wreq =	1.32 ft					
Beam Shear Calculations (One Way Shear):							
Beam Shear:	Vu1 =	0 lb	8 in	0		0	
Allowable Beam Shear:	Vc1 =	3825 lb					
Transverse Direction:							
Bending Calculations:							3 ir
Factored Moment:	Mu =	1310 in-lb					
Nominal Moment Strength:	Mn =	0 in-lb					
Reinforcement Calculations:					1.333333 ft		
Concrete Compressive Block Depth:	a =	0.30 in					
Steel Required Based on Moment:	As(1) =	0.01 in2	FOOTING				
Min. Code Req'd Reinf. Shrink./Temp. (ACI-1)	• • •	0.19 in2	Live Load:		= 1000 plf		
Controlling Reinforcing Steel:		= 0.19 in2	Dead Load		= 700 plf		
	rans: #4's @ 1		Total Load		= 1850 plf		
Reinforcement Area Provided:	As =	0.19 in2		actored Load: Pu			
Development Length Calculations:					2020 pii		
Development Length Required:	Ld =	15 in					
Development Length Supplied:	Ld-sup =						
Longitudinal Direction:	F						

Min. Code Req'd Reinf. Shrink./Temp.	(ACI-10.5.4):	As(2) =	0.26 in2
Controlling Reinforcing Steel:		As-reqd =	0.26 in2
Selected Reinforcement:	Longitudinal:	(2) Cont. #	4 Bars
Reinforcement Area Provided:		As =	0.39 in2

Loading Demand on Existing Footing:

Roof = (15 psf * 12ft)D + (25 psf * 12 ft)S

Wall Load = 100 plf D

$$\begin{split} W_{\text{tot (ASD)}} &= (280 \text{ PLF})D + (300 \text{ PLF})S \\ W_{\text{tot (LRFD)}} &= 1.2(280) + 1.6(300)S = 816 \text{ PLF} < 2620 \text{ PLF} \end{split}$$

Project Title: Engineer: Project ID: Project Descr:

General Footing

LIC# : KW-06011993, Build:20.22.1.5

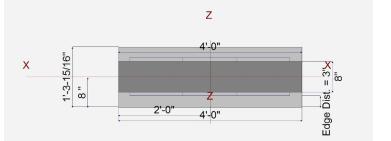
L120 Engineering and Design

(c) ENERCALC INC 1983-2021

DESCRIPTION: 16" (non retaining) stemwall footing - max point load (1500psf)

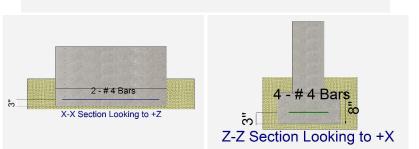
Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2018


General Information

Material Propertiesfc : Concrete 28 day strengthfy : Rebar YieldEc : Concrete Elastic ModulusConcrete DensityφValuesFlexure	6 3,12 14 0	2.5 ksi 0.0 ksi 2.0 ksi 5.0 pcf .90	Soil Design Values Allowable Soil Bearing Soil Density Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff.	= = = =	1.50 ksf 110.0 pcf No 250.0 pcf 0.30
Shear = Analysis Settings Min Steel % Bending Reinf. Min Allow % Temp Reinf. Min. Overturning Safety Factor	0.5 = = =	750 0.00180 1.0 : 1	Increases based on footing Depth Footing base depth below soil surface Allow press. increase per foot of depth when footing base is below	= = =	1.0 ft ksf ft
Min. Sliding Safety Factor Add Ftg Wt for Soil Pressure Use ftg wt for stability, moments & shears Add Pedestal Wt for Soil Pressure Use Pedestal wt for stability, mom & shear	= : : :	1.0 : 1 Yes Yes No No	Increases based on footing plan dimensi Allowable pressure increase per foot of de when max. length or width is greater than	epth =	ksf ft

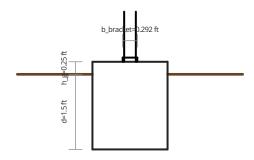
Dimensions


Width parallel to X-X Axis	=	4.0 ft
Length parallel to Z-Z Axis	=	1.330 ft
Footing Thickness	=	8.0 in

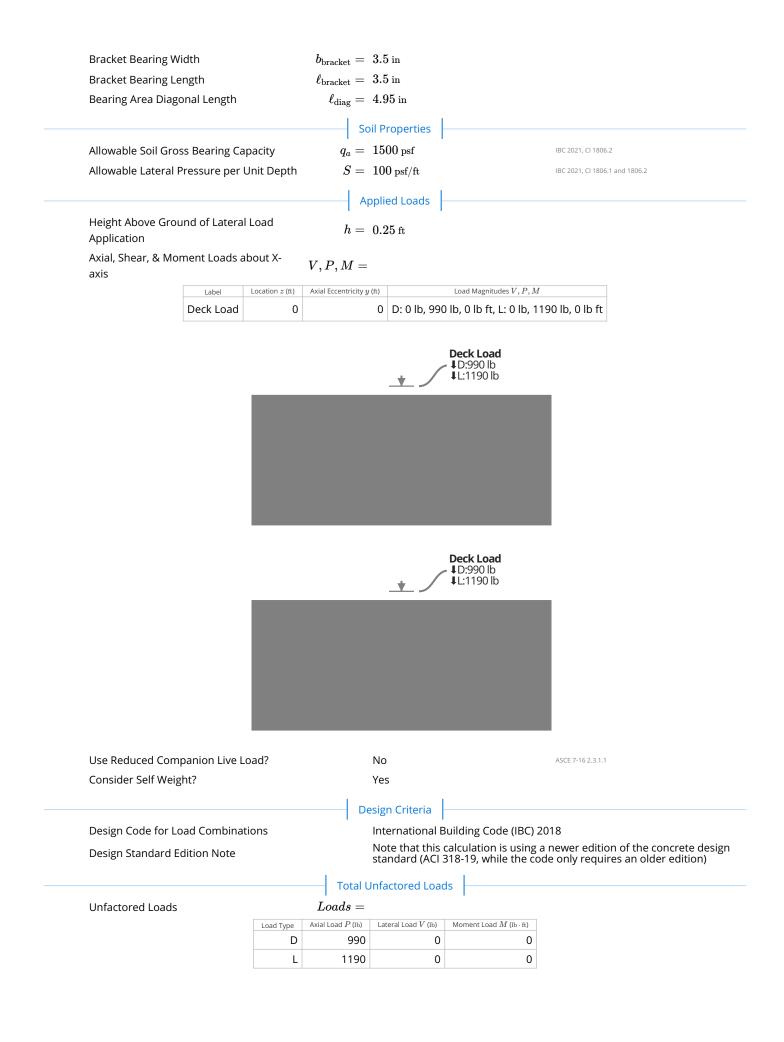
Pedestal dimensions		
px : parallel to X-X Axis	=	48.0 in
pz : parallel to Z-Z Axis	=	8.0 in
Height	-	18.0 in
Rebar Centerline to Edge of	Concrete	
at Bottom of footing	=	3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	= =	#	2.0 4		
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size	= =	#	4.0 4		
Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation					
	Bars	along Z-Z	Axis		
# Bars required within zone					
# Bars required on each side of zone 50.1 °					
A second state of the second state					


Applied Loads

		D	Lr	L	S	w	E	н
P : Column Load OB : Overburden	=	3.0		4.30				k ksf
M-xx M-zz	=							k-ft k-ft
V-x V-z	=							k
V-z	=							k


Pier Footing (version 5)

Created with ClearCalcs.com

Clien	t:		Date:	Jun 3, 2022
Auth	or: Har	rison Kliegl	Job #:	
LONGITUDE ONE TWENTY [®] ENGINEERING & DESIGN	e ct: Foo	ting Checks	Subject:	18" Sonotube (1500 PASS psf)
Refe	rences:	IBC 2021, ACI 318-19		
		Summary		
Lateral Soil Stress at 1/3 of Embe Depth	edment	$S_1^\prime = \ 0 \ { m psf}$	IBC 2021, C	I 1807.3.2.1
0% Allowable Lateral Soil Stress		$S_a=~50~{ m psf}$		
Gross Vertical Bearing Pressure		$q_s=~1500~{ m psf}$		
100% Allowable Vertical Bearing Press	ure	$q_a=~1500~{ m psf}$		
1% Pier Compression and Bending (Capacity	$\mathrm{Int}=~0.0135$	ACI 318-19	, CI 14.5.4.1
Shear Demand		$V_u=~0$ lb		
0% Pier Shear Strength		$\phi V_n=~11500$ lb	ACI 318-19	, CI 14.5.5
Ultimate Bearing Load		$P_u=~3090{ m lb}$		
10% Pier Bearing Capacity		$\phi B_n=~31200$ lb		

	Pier Properties	
Pier Diameter	$b=~18~{ m in}$	
Embedment Depth	$d=~1.5{ m ft}$	
Height of Pier Above Ground	$h_g=~0.25{ m ft}$	
Total Pier Length	$L_{pier}=~1~{ m ft}$, $9~{ m in}$	
Lateral Constraint at Ground Surface	Nonconstrained	IBC 2021, CI 1807.3.2
	Concrete Properties	
Concrete Strength	$f_c^\prime=~2500~{ m psi}$	ACI 318-19 Table 19.2.1.1
Concrete Weight Classification	Normalweight	ACI 318-19, Cl 19.2.4.2 and Cl 19.2.4.3
	Post Properties	
Post and Connection Type	Post + Bracket / Bearing P	late

ASD Load Combinations (ASCE 7-16, Ch. 2)

Service (ASD) Loa	I			IBC 2021, CI 1605.2
Service (ASD) Lua				
	Load Combination	Axial Load P (lb)	Lateral Load V (lb)	Pure Moment Load M (lb \cdot ft)
	D+F	1450	0	0
	D+H+F + L	2640	0	0
	D+H+F + L_r	1450	0	0
	D+H+F + S	1450	0	0
	D+H+F + R	1450	0	0
	D+H+F + 0.75L + 0.75 L_r	2350	0	0
	D+H+F + 0.75L + 0.75 S	2350	0	0
	D+H+F + 0.75L + 0.75 R	2350	0	0
	D+H+F + 0.6W,dn	1450	0	0
	D+H+F + 0.7E	1450	0	0
	D+H+F + 0.45W_dn + 0.75L + 0.75L_r	2350	0	0
	D+H+F + 0.45W_dn + 0.75L + 0.75S	2350	0	0
	D+H+F + 0.45W_dn + 0.75L + 0.75R	2350	0	0
	D+H+F + 0.525E + 0.75L + 0.75S	2350	0	0
	0.6D + 0.6W,up + H	872	0	0
	0.6(D+F) - 0.7Ev + 0.7Eh + H	872	0	0

Governing ASD Axial Load

i.

$P_s=~2640\,{ m lb}$

i.

trength	Load Combinations $LC_{str} =$			
	Load Combination	Factored Axial Load P_u (lb)	Ultimate Shear V_u (lb)	Ultimate Moment M_u (lb \cdot ft
	1.4(D+F)	1390	0	
	1.2(D+F) + 1.6(L+H) + 0.5L_r	3090	0	
	1.2(D+F) + 1.6(L+H) + 0.5S	3090	0	
	1.2(D+F) + 1.6(L+H) + 0.5R	3090	0	
	1.2(D+F) + 1.6L_r + 1.6H + f_1L	2380	0	
	1.2(D+F) + 1.6L_r + 1.6H + 0.5W_dn	1190	0	
	1.2(D+F) + 1.6S + 1.6H + f_1L	2380	0	
	1.2(D+F) + 1.6S + 1.6H + 0.5W_dn	1190	0	
	1.2(D+F) + 1.6R + 1.6H + f_1L	2380	0	
	1.2(D+F) + 1.6R + 1.6H + 0.5W_dn	1190	0	
	1.2(D+F) + 1.0W_dn + f_1L + 0.5L_r	2380	0	
	1.2(D+F) + 1.0W_dn + f_1L + 0.5S	2380	0	
	1.2(D+F) + 1.0W_dn + f_1L + 0.5R	2380	0	
	1.2(D+F) + 1.0E_v + 1.0E_h + f_1L + 1.6H + f_2S	2380	0	
	0.9D + 1.0W_up + 1.6H	891	0	
	0.9(D+F) - 1.0E v + 1.0E h + 1.6H	891	0	

Maximum Ultimate Axial Load
Maximum Ultimate Shear Load
Maximum Ultimate Moment Load

$$P_{umax}=~3090$$
 lk $V_{umax}=~0$ lb $M_{umax}=~0$ lb \cdot ft

Pier Canacity	(ACI 318-19, Ch. 21)
	(ACI 510-19, CII. 21)

$\phi M_{n,t}=~7160$ lb \cdot ft	ACI 318-19, CI 14.5.2.1
$\phi M_{n,c}=~60800$ lb \cdot ft	ACI 318-19, CI 14.5.2.1
$\phi P_n=~229000$ lb	ACI 318-19, CI 14.5.3.1

0% Pier M

Pier Moment Capacity (Tension Face) Pier Moment Capacity (Compression Face)

Pier Compression Capacity

	Pier Embedment (IBC 2021, Ch.	18)
Solved Minimum Embedment Depth	$d_{ m min, solved}=\!1$ ft, 6 in	IBC 2021, Eq. 18-1 and 18-2
Lateral Soil Stress at Designated Depth	$S'=~0~{ m psf}$	IBC 2021, Eq. 18-1 and 18-2
	Comments	

Wall Footing (version 7)

Created with ClearCalcs.com

	Client:		Date:	Jun 3, 2022	
	Author:	Harrison Kliegl	Job #:		
ENGINEERING & DESIGN	Project:	Footing Checks	Subject:	Thickened Slab Edge Check	PASS
	References:	ACI 318-19			
		Summary			
Service Soil Bearing Stress	5	$q_s=~981{ m psf}$			
5% Allowable Gross Soil Beari		$q_a=~1500~{ m psf}$	ACI318-19	, Cl 13.3.1.1	
Moment Demand		$M_u = m 6.82~lb\cdot ft/ft$		9, Cl 13.2.7.1	
 % Factored Moment Capacity 	V	$\phi M_n = m 900~lb\cdot ft/ft$	ACI 318-1		
Shear Demand	y	$V_u = 0 { m plf}$		9, Cl 7.4.3.2	
% Factored One-Way Shear (Capacity	$\phi V_u = - 0 ~{ m ph}$ $\phi V_n = - 2880 ~{ m plf}$		9, CI 7.5.1.1	
	capacity			9, CI 7.3.1.1	
Stability		$\mathrm{Status}=~\mathrm{Footing}$ in Total Com	ואו באאוטו		
		B=8.04 in			
Footing Width		$B = 0.67 \mathrm{ft}$			
Footing Thickness		H = 8 in	ACI 318-1	9, Cl 14.3.2.1 IBC 2021, Cl 1809.8 IF	RC 2021, CI R40
Wall Type		Concrete			
Wall Width		b=~5.5 in			
Concrete Strength		$f_c^\prime =~2500~{ m psi}$	ACI 318-1	9, Table 19.2.1.1	
Concrete Weight Classifica	ation	Normalweight	ACI 318-1	9, Cl 19.2.4.2	
		Soil Properties			
Allowable Soil Cross Peari		Soil Properties	IPC 2024	CI 1806 2	
Allowable Soil Gross Beari Depth of Soil Over Footing		$egin{array}{lll} q_a = & 1500 \ { m psf} \ h_{soil} = & 0.5 \ { m ft} \end{array}$	IBC 2021, IBC 2021,		
Unit Weight of Soil	5	$egin{array}{ll} n_{soil} = 0.3 \ { m fr} \ \gamma_s = 100 \ { m pcf} \end{array}$	IBC 2021,	Cr 1602.3	
Lateral Sliding Coefficient	of Friction	$\gamma_s = 100 ext{ pcr}$ $\mu = 0.3$			
Later a Sharing Coemclent	of friction	$\mu=0.0$			

Concrete Cover Reinforcement Yield Strength		cover = 3 in			
			$f_y=~60000~{ m psi}$	ACI 318-19, Table 20.2.2.4a	
Include Longitudinal Reinforcement? Shrinkage/Temperature Reinforcement Size Number of Shrinkage/Temperature Bars Required Number of Shrinkage/ Temperature Bars			Longitudinal Reinford Yes	ACI 318-19, CI 14.1.4	
			#4		
			$n_\ell = ~2$	ACI 318-19, CI 7.7.2.3	
			$n_{\ell,reqd}=~2$	ACI 318-19, CI 7.7.2.3	
			Applied Loads		
Axial, Sl axis	hear, & Moment Loads	about X-	V, P, M =	'	
	Label	Location z (ft)	Axial Eccentricity y (ft)	Load Magnitudes V, P, M	
	Dead + Occupancy	0	0 D: 0 plf, 2	80 plf, 0 (lb ft) / ft, S: 0 plf, 300 plf, 0 (lb ft) / ft	
			<u>+</u> /	L D:280 plf S:300 plf	
				LD:280 plf S:300 plf	
Use Red	duced Companion Live	Load?	No	4 D:280 plf 4 S:300 plf	
Self We	ight of Concrete Footin		$SW=~67~{ m plf}$	↓S:300 plf	
Self We			$SW=~67~{ m plf}$ $W_{soil}=~10.6~{ m plf}$	\$S:300 plf ASCE 7-16 2.3.1.1	
Self We Weight	ight of Concrete Footin of Soil above Footing	g	$SW=~67~{ m plf}$ $W_{soil}=~10.6~{ m plf}$ Design Criteria	♣S:300 plf ASCE 7-16 2.3.1.1	
Self We Weight Design	ight of Concrete Footin of Soil above Footing Code for Load Combin	g	$SW = 67 \mathrm{plf}$ $W_{soil} = 10.6 \mathrm{plf}$ Design Criteria	IS:300 plf ASCE 7-16 2.3.1.1 ASCE 7-16 2.3.1.1	rote d
Self We Weight Design Design	ight of Concrete Footin of Soil above Footing Code for Load Combin Standard Edition Note	g ations	$SW = 67 \mathrm{plf}$ $W_{soil} = 10.6 \mathrm{plf}$ Design Criteria	♣S:300 plf ASCE 7-16 2.3.1.1	rete c ditior
Self We Weight Design Design	ight of Concrete Footin of Soil above Footing Code for Load Combin Standard Edition Note and Overturning Minim	g ations	$SW = 67 \mathrm{plf}$ $W_{soil} = 10.6 \mathrm{plf}$ Design Criteria	IS:300 plf ASCE 7-16 2.3.1.1 ASCE 7-16 2.3.1.1	rete o ditior
Self We Weight Design Design Sliding	ight of Concrete Footin of Soil above Footing Code for Load Combin Standard Edition Note and Overturning Minim	g ations	SW = 67 plf $W_{soil} = 10.6 \text{ plf}$ Design Criteria Internationa Note that th standard (A	IS:300 plf ASCE 7-16 2.3.1.1 ASCE 7-16 2.3.1.1	rete o ditior
Self We Weight Design Design Sliding of Safet	ight of Concrete Footin of Soil above Footing Code for Load Combin Standard Edition Note and Overturning Minim	g ations	SW = 67 plf $W_{soil} = 10.6 \text{ plf}$ Design Criteria Internationa Note that th standard (A $FS_{min} = 1.5$ Total Loads Loads =	IS:300 plf ASCE 7-16 2.3.1.1 ASCE 7-16 2.3.1.1	rete c ditior
Self We Weight Design Design Sliding of Safet	ight of Concrete Footin of Soil above Footing Code for Load Combin Standard Edition Note and Overturning Minim	g ations	SW = 67 plf $W_{soil} = 10.6 \text{ plf}$ Design Criteria Internationa Note that th standard (A $FS_{\min} = 1.5$ Total Loads	ASCE 7-16 2.3.1.1 ASCE 7-16 2.	rete c ditior

ASD Load Combinations and Stress Distribution (ASCE 7-16, Ch. 2)

SD Load Combinations	$LC_{str,As}$	$_{SD} =$			
Load Combination	Axial Load P (plf)	Lateral Load V (plf)	Moment Load M (lb \cdot ft/ft)	Foundation Weight W_f (plf)	Eccentricity e (ft)
D+F	280	0	0	77.6	0
D+H+F + L	280	0	0	77.6	0
D+H+F + L_r	280	0	0	77.6	0
D+H+F + S	580	0	0	77.6	0
D+H+F + R	280	0	0	77.6	0
D+H+F + 0.75L + 0.75 L_r	280	0	0	77.6	0
D+H+F + 0.75L + 0.75 S	505	0	0	77.6	0
D+H+F + 0.75L + 0.75 R	280	0	0	77.6	0
D+H+F + 0.6W,dn	280	0	0	77.6	0
D+H+F + 0.7E	280	0	0	77.6	0
D+H+F + 0.45W_dn + 0.75L + 0.75L_r	280	0	0	77.6	0
D+H+F + 0.45W_dn + 0.75L + 0.75S	505	0	0	77.6	0
D+H+F + 0.45W_dn + 0.75L + 0.75R	280	0	0	77.6	0
D+H+F + 0.525E + 0.75L + 0.75S	505	0	0	77.6	0
0.6D + 0.6W,up + H	168	0	0	46.6	0
0.6(D+F) - 0.7Ev + 0.7Eh + H	168	0	0	46.6	0

Bearing Pressure

$\mathbf{BP} =$

Combination	Eccentricity e (ft)	Maximum Bearing Pressure q_{max} (psf)	Sliding Factor of Safety $FS_{s} \ \ $	Overturning Factor of Safety FS_o
D+F	0	534	99	A
D+H+F + L	0	534	99	Δ
D+H+F + L_r	0	534	99	Δ
D+H+F + S	0	981	99	Δ
D+H+F + R	0	534	99	Δ
D+H+F + 0.75L + 0.75 L_r	0	534	99	A
D+H+F + 0.75L + 0.75 S	0	870	99	Δ
D+H+F + 0.75L + 0.75 R	0	534	99	Δ
D+H+F + 0.6W,dn	0	534	99	A
D+H+F + 0.7E	0	534	99	Δ
D+H+F + 0.45W_dn + 0.75L + 0.75L_r	0	534	99	A
D+H+F + 0.45W_dn + 0.75L + 0.75S	0	870	99	Δ
D+H+F + 0.45W_dn + 0.75L + 0.75R	0	534	99	Δ
D+H+F + 0.525E + 0.75L + 0.75S	0	870	99	A
0.6D + 0.6W,up + H	0	320	99	A
0.6(D+F) - 0.7Ev + 0.7Eh + H	0	320	99	A

Governing ASD Axial Load

 $P_s=~658~{
m plf}$

LRFD Load Combinations and Footing Loads (ASCE 7-16, Ch. 2 and ACI 318-19, Ch. 13)

LRFD Strength Load Combinations $LC_{str,LRFD} =$ Factored Axial Load P_u (plf) Factored Moment Load M_u ($\mathrm{lb}\cdot\mathrm{ft/ft}$) Factored Foundation Weight W_{uf} (plf) Eccentricity e (ft) Load Combination 1.4(D+F) 1.2(D+F) + 1.6(L+H) + 0.5L_r 93.1 1.2(D+F) + 1.6(L+H) + 0.5S 93.1 1.2(D+F) + 1.6(L+H) + 0.5R 93.1 1.2(D+F) + 1.6L_r + 1.6H + f_1L 93.1 1.2(D+F) + 1.6L_r + 1.6H + 0.5W_dn 93.1 1.2(D+F) + 1.6S + 1.6H + f_1L 93.1 1.2(D+F) + 1.6S + 1.6H + 0.5W_dn 93.1 1.2(D+F) + 1.6R + 1.6H + f_1L 93.1 1.2(D+F) + 1.6R + 1.6H + 0.5W_dn 93.1 1.2(D+F) + 1.0W_dn + f_1L + 0.5L_r 93.1 1.2(D+F) + 1.0W_dn + f_1L + 0.5S 93.1 1.2(D+F) + 1.0W_dn + f_1L + 0.5R 93.1 1.2(D+F) + 1.0E_v + 1.0E_h + f_1L + 1.6H + f_2S 93.1 0.9D + 1.0W_up + 1.6H 69.8 0.9(D+F) - 1.0E_v + 1.0E_h + 1.6H 69.8

$\mathbf{FL} =$

LRFD Footing Loads (Shear)

Ultimate Shear at Critical Eccentricity e Max Bearing Pressure Bearing Pressure at Column Bearing Pressure at Critical Shear Combination Section q_{uV} (psf) Section V_u (plf) q_{umax} (psf) ace q_{uCol} (psf) (ft) 1.4(D+F) 1.2(D+F) + 1.6(L+H) + 0.5L_r 1.2(D+F) + 1.6(L+H) + 0.5S 1.2(D+F) + 1.6(L+H) + 0.5R 1.2(D+F) + 1.6L_r + 1.6H + f_1L 1.2(D+F) + 1.6L_r + 1.6H + 0.5W_dn 1.2(D+F) + 1.6S + 1.6H + f_1L 1.2(D+F) + 1.6S + 1.6H + 0.5W_dn 1.2(D+F) + 1.6R + 1.6H + f_1L 1.2(D+F) + 1.6R + 1.6H + 0.5W_dn 1.2(D+F) + 1.0W_dn + f_1L + 0.5L_r 1.2(D+F) + 1.0W_dn + f_1L + 0.5S 1.2(D+F) + 1.0W_dn + f_1L + 0.5R 1.2(D+F) + 1.0E_v + 1.0E_h + f_1L + 1.6H + f_2S 0.9D + 1.0W_up + 1.6H 0.9(D+F) - 1.0E_v + 1.0E_h + 1.6H

	(ft)	Max Bearing Pressure q_{umax} (psf)	Bearing Pressure at Column Face q_{uCol} ($_{ m psf}$)	(lb · ft/ft)		
1.4(D+F)	0	747	747	3.2		
1.2(D+F) + 1.6(L+H) + 0.5L_r	0	640	640	2.8		
1.2(D+F) + 1.6(L+H) + 0.5S	0	864	864	4.0		
1.2(D+F) + 1.6(L+H) + 0.5R	0	640	640	2.8		
1.2(D+F) + 1.6L_r + 1.6H + f_1L	0	640	640	2.8		
1.2(D+F) + 1.6L_r + 1.6H + 0.5W_dn	0	640	640	2.8		
1.2(D+F) + 1.6S + 1.6H + f_1L	0	1360	1360	6.8		
1.2(D+F) + 1.6S + 1.6H + 0.5W_dn	0	1360	1360	6.8		
1.2(D+F) + 1.6R + 1.6H + f_1L	0	640	640	2.8		
1.2(D+F) + 1.6R + 1.6H + 0.5W_dn	0	640	640	2.8		
1.2(D+F) + 1.0W_dn + f_1L + 0.5L_r	0	640	640	2.8		
1.2(D+F) + 1.0W_dn + f_1L + 0.5S	0	864	864	4.0		
1.2(D+F) + 1.0W_dn + f_1L + 0.5R	0	640	640	2.8		
2(D+F) + 1.0E_v + 1.0E_h + f_1L + 1.6H + f_2S	0	730	730	3.:		
0.9D + 1.0W_up + 1.6H	0	480	480	2.		
0.9(D+F) - 1.0E_v + 1.0E_h + 1.6H	0	480	480	2.		
Governing Axial Load		$P_u=~816~{ m plf}$				
Maximum Ultimate Net Bearing Pre	essure	$q_{nu}=~1220~{ m psf}$				
		ral Analysis (ACI 318-19	CI 22.2)			
Resistance Factor in Bending		$\phi_b=~0.6$	ACI 318-19, T	able 21.2.2		
Moment Capacity		$M_n = ~1500 ~{ m lb} \cdot { m ft}/{ m ft}$	ACI 318-19, C	l 22.3.1.1 and 14.5.2.1 (plain concrete)		
Factored Moment Capacity		$M_n = 900 ext{ lb} \cdot ext{ft}/ ext{ft}$	ACI 318-19, C			
Ultimate Moment at Critical Section		$M_u = m 6.82~lb\cdot ft/ft$	ACI 318-19, C			
onimate moment at childar section		$u_u = 0.02 \text{ m} \cdot \text{m/m}$				
	One-	Way Shear (ACl 318-19,	CI 22.5)			
Resistance Factor in Shear		$\phi_v=~0.6$	ACI 318-19, T	able 21.2.1		
Concrete Shear Strength		$V_c=~4800~{ m plf}$	ACI 318-19, C	ACI 318-19, Cl 22.5.5.1 and 14.5.5.1 (plain concrete)		
Factored One-Way Shear Capacity		$\phi V_n=~2880~{ m plf}$	ACI 318-19, C	17.5.1.1		
Ultimate Shear at Critical Section		$V_u = 0$ plf	ACI 218 10 C	ACI 318-19, CI 7.4.3.2 and CI 22.5.1.2 for crushing strengti		

Project Title: Engineer: Project ID: Project Descr:

General Footing

LIC# : KW-06011993, Build:20.22.1.5

DESCRIPTION: 16" (non retaining) stemwall footing - max point load (1500psf)

(c) ENERCALC INC 1983-2021

DESIGN SUMMARY

SIGN SU	IMMARY				Design OK
	Min. Ratio	ltem	Applied	Capacity	Governing Load Combination
PASS	0.9913	Soil Bearing	1.487 ksf	1.50 ksf	+D+L about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.0	Z Flexure (+X)	0.0 k-ft/ft	0.0 k-ft/ft	No Moment
PASS	0.0	Z Flexure (-X)	0.0 k-ft/ft	0.0 k-ft/ft	No Moment
PASS	0.02530	X Flexure (+Z)	0.1071 k-ft/ft	4.235 k-ft/ft	+1.20D+1.60L
PASS	0.02530	X Flexure (-Z)	0.1071 k-ft/ft	4.235 k-ft/ft	+1.20D+1.60L
PASS	n/a	1-way Shear (+X)	0.0 psi	67.082 psi	n/a
PASS	n/a	1-way Shear (-X)	0.0 psi	67.082 psi	n/a
PASS	n/a	1-way Shear (+Z)	0.0 psi	67.082 psi	n/a
PASS	n/a	1-way Shear (-Z)	0.0 psi	67.082 psi	n/a
PASS	n/a	2-way Punching	0.0 psi	67.082 psi	n/a
tailed Re	sults				

L120 Engineering and Design

Soil Bearing

Rotation Axis &		>	Kecc Zecc	c Actu	ual Soil Bearing St	ress @ Loc	ation	Actual / Allo
Load Combination	Gross Allowa	ble	(in)	Bottom, -Z	C Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50		n/a 0.	0 0.6789	0.6789	n/a	n/a	0.453
X-X, +D+L	1.50		n/a 0.	0 1.487	1.487	n/a	n/a	0.991
X-X, +D+0.750L	1.50		n/a 0.	0 1.285	1.285	n/a	n/a	0.857
X-X, +0.60D	1.50		n/a 0.	0 0.4073	0.4073	n/a	n/a	0.272
Z-Z, D Only	1.50		0.0 n/	'a n/a	n/a	0.6789	0.6789	0.453
Z-Z, +D+L	1.50		0.0 n/	'a n/a	n/a	1.487	1.487	0.991
Z-Z, +D+0.750L	1.50		0.0 n/	'a n/a	n/a	1.285	1.285	0.857
Z-Z, +0.60D	1.50		0.0 n/			0.4073	0.4073	0.272
Overturning Stability								
Rotation Axis &								
Load Combination		Overt	urning Mom	ent	Resisting Momen	it Stal	bility Ratio	Status
Footing Has NO Overturning								
Sliding Stability							A	ll units k
Force Application Axis Load Combination		S	liding Force		Resisting Force	Stal	bility Ratio	Status
Footing Has NO Sliding								
Footing Flexure								
Flexure Axis & Load Combination	n Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As A in^2	ctual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	0.04201	+Z	Bottom	0.1728	AsMin	0.20	4.235	ок
X-X, +1.40D	0.04201	-Z	Bottom	0.1728	AsMin	0.20	4.235	OK
X-X, +1.20D+1.60L	0.1071	+Z	Bottom	0.1728	AsMin	0.20	4.235	OK
X-X, +1.20D+1.60L	0.1071	-Z	Bottom	0.1728	AsMin	0.20	4.235	OK
X-X, +1.20D+0.50L	0.05823	+Z	Bottom	0.1728	AsMin	0.20	4.235	OK
X-X, +1.20D+0.50L	0.05823	-Z	Bottom	0.1728	AsMin	0.20	4.235	OK
X-X, +1.20D	0.03601	+Z	Bottom	0.1728	AsMin	0.20	4.235	OK
X-X, +1.20D	0.03601	-Z	Bottom	0.1728	AsMin	0.20	4.235	OK
X-X, +0.90D	0.0270	+Z	Bottom	0.1728	AsMin	0.20	4.235	OK
X-X, +0.90D	0.0270	-Z	Bottom	0.1728	AsMin	0.20	4.235	OK
Z-Z, +1.40D	0.0	-X	Тор	0.1728		0.3008	6.168	ÖK
Z-Z, +1.40D	0.0	+X	Тор	0.1728		0.3008	6.168	OK
,		-X	Тор	0.1728		0.3008	6.168	ÖK
Z-Z. +1.20D+1.60L	0.0	-^						
Z-Z, +1.20D+1.60L Z-Z +1 20D+1 60I	0.0 0.0							
Z-Z, +1.20D+1.60L	0.0	+X	Тор	0.1728	AsMin	0.3008	6.168	ОК
					AsMin AsMin			

Project Title: Engineer: Project ID: Project Descr:

General Footing LIC# : KW-06011993, Build:20.22.1.5

L120 Engineering and Design

(c) ENERCALC INC 1983-2021

DESCRIPTION: 16" (non retaining) stemwall footing - max point load (1500psf)

Footing Flexure

Flexure Axis & Load Combination	n Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. A in^2	s Actual in^2		ii*Mn k-ft	Status
Z-Z, +1.20D	0.0	+X	Тор	0.1728	AsMin	0.300	8	6.168	ок
Z-Z, +0.90D	0.0	-X	Тор	0.1728	AsMin	0.300	8	6.168	ок
Z-Z, +0.90D	0.0	+X	Тор	0.1728	AsMin	0.300	8	6.168	ОК
One Way Shear									
Load Combination	Vu @ -X	Vu @	+X Vu	@-Z Vu(@ +Z	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.40D	0.00	osi	0.00 psi	0.00 psi	0.00 psi	0.00 psi	67.08 ps	si 0.00	ОК
+1.20D+1.60L	0.00	osi	0.00 psi	0.00 psi	0.00 psi	0.00 psi	67.08 ps	si 0.00	ОК
+1.20D+0.50L	0.00	osi	0.00 psi	0.00 psi	0.00 psi	0.00 psi	67.08 ps	si 0.00	ОК
+1.20D	0.00	osi	0.00 psi	0.00 psi	0.00 psi	0.00 psi	67.08 ps	si 0.00	ОК
+0.90D	0.00	osi	0.00 psi	0.00 psi	0.00 psi	0.00 psi	67.08 ps	si 0.00	ОК
Two-Way "Punching" Shear			•	•		•	·	All units	s k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn	1		Status
+1.40D		0.0	00 psi	89.44 p	si	0			OK
+1.20D+1.60L		0.0)0 psi	89.44 p	si	0			ок
+1.20D+0.50L		0.0	00 psi	89.44 p	si	0			OK
+1.20D		0.0	00 psi	89.44 p	si	0			OK
+0.90D		0.0	00 psi	89.44 p	si	0			OK

SUPPLEMENTAL CALCULATIONS

Post Installed Hold-Down Anchors Ledger Calculations

SIMPSON

Strong-Tie

Anchor Designer™ Software Version 3.0.7947.2

Company:	L120 Engineering & Design	Date:	3/18/2022
Engineer:		Page:	1/5
Project:			
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.625 Effective Embedment depth, h_{ef} (inch): 10.000 Code report: ICC-ES ESR-4057 Anchor category: -Anchor ductility: Yes h_{min} (inch): 11.38 c_{ac} (inch): 22.57 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Recommended Anchor

Anchor Name: SET-3G - SET-3G w/ 5/8"Ø F1554 Gr. 36 Code Report: ICC-ES ESR-4057

Project description: Location: Fastening description:

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f'c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Hole condition: Dry concrete Inspection: Continuous Temperature range, Short/Long: 150/110°F Ignore 6do requirement: Not applicable Build-up grout pad: No

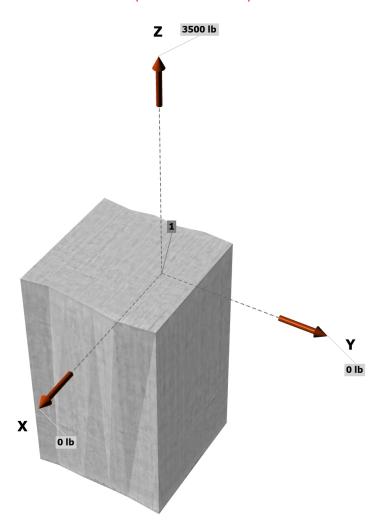
Post Installed HDU 5 Uplift Capacity (Wind Controlled)

SIMPSON

Strong-Tie

Anchor Designer™ Software Version 3.0.7947.2

Company:	L120 Engineering & Design	Date:	3/18/2022
Engineer:		Page:	2/5
Project:			
Address:			
Phone:			
E-mail:			

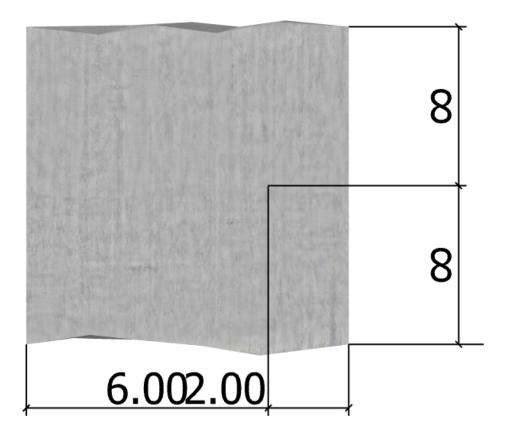

Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

N_{ua} [lb]: 3500 V_{uax} [lb]: 0 V_{uay} [lb]: 0

<Figure 1>

Post Installed HDU 5 Uplift Capacity (Wind Controlled)



Anchor Designer™ Software Version 3.0.7947.2

Company:	L120 Engineering & Design	Date:	3/18/2022
Engineer:		Page:	3/5
Project:			
Address:			
Phone:			
E-mail:			

<Figure 2>

MPSON Anchor Designer™	Company:	L120 Engineering & Design	Date:	3/18/2022
	Engineer:		Page:	4/5
cong Tie Software	Project:			•
Version 5.0.7947.2	Address:			
®	Phone:			
	E-mail:			

3. Resulting Anchor Forces

SI

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (Ib)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	3500.0	0.0	0.0	0.0
Sum	3500.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 3500

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

Nsa (lb)	ϕ	ϕN_{sa} (lb)	
13110	0.75	9833	

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

$N_b = k_c \lambda_a \sqrt{f'_c}$	<i>h</i> ℯғ ^{1.5} (Eq. 17.4.2	2.2a)						
Kc	λa	f'c (psi)	hef (in)	<i>N</i> ♭ (lb)				
17.0	1.00	2500	10.000	26879				
$\phi N_{cb} = \phi \left(A_N \right)$	c / A _{Nco}) Ψed,N Ψc,I	$_N \Psi_{cp,N} N_b$ (Sec. 1	7.3.1 & Eq. 17.4	4.2.1a)				
A_{Nc} (in ²)	A_{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕN_{cb} (lb)
240.00	900.00	2.00	0.740	1.00	1.000	26879	0.65	3448
	e Strength of A rt-termKsat(f'c / 2,50	Anchor in Tens	<u>ion (Sec. 17.4</u> .	<u>.5)</u>				
τ _{k,cr} (psi)	f short-term	K _{sat}	f'c (psi)	n	τ _{k,cr} (psi)			
1356	1.00	1.00	2500	0.24	1356			
$N_{ba} = \lambda_{a} \tau_{cr} \pi d$	<i>d₅h_{ef}</i> (Eq. 17.4.5	5.2)						
λa	$ au_{cr}$ (psi)	da (in)	h _{ef} (in)	N _{ba} (lb)				
1.00	1356	0.63	10.000	26625				
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) <i>Y</i> ed,Na <i>Y</i> cp	_{,Na} N _{ba} (Sec. 17.3	3.1 & Eq. 17.4.5	5.1a)				
A _{Na} (in ²)	ANao (in ²)	c _{Na} (in)	Ca,min (in)	$\Psi_{ed,Na}$	$\Psi_{cp,Na}$	Nba (lb)	ϕ	<i>φN</i> a (Ib)
			()					, , ,

Anchor Designer™ Software Version 3.0.7947.2

Company:	L120 Engineering & Design	Date:	3/18/2022
Engineer:		Page:	5/5
Project:			
Address:			
Phone:			
E-mail:			

<u>11. Results</u>

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (Ib)	Design Strength, øNn (lb)	Ratio	Status
Steel	3500	9833	0.36	Pass
Concrete breakout	3500	3448	1.02	Fail (Governs)
Adhesive	3500	6071	0.58	Pass

FAIL! Selected anchor type and embedment do not meet the selected design criteria.

12. Warnings

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

SIMPSON

Strong-I

Anchor Designer™ Software Version 3.0.7947.2

Company:	Date:	9/14/2022
Engineer:	Page:	1/5
Project:	-	
Address:		
Phone:		
E-mail:		

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 1.000 Effective Embedment depth, h_{ef} (inch): 12.000 Code report: ICC-ES ESR-4057 Anchor category: -Anchor ductility: Yes h_{min} (inch): 14.25 c_{ac} (inch): 28.14 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Recommended Anchor

Anchor Name: SET-3G - SET-3G w/ 1"Ø F1554 Gr. 36 Code Report: ICC-ES ESR-4057

Project description: Location: Fastening description:

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 15.00 State: Cracked Compressive strength, f'c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: A tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Hole condition: Dry concrete Inspection: Continuous Temperature range, Short/Long: 150/110°F Ignore 6do requirement: Not applicable Build-up grout pad: No

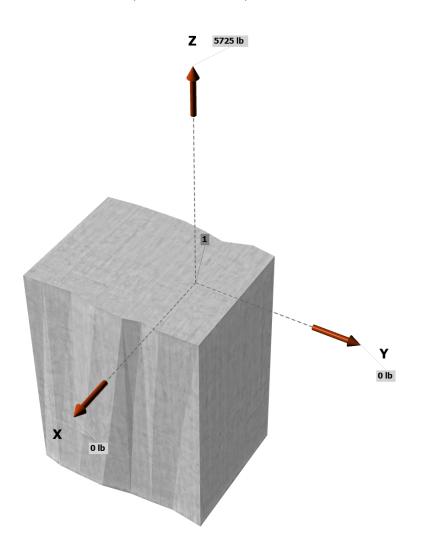
Post Installed HDU 8 Uplift Capacity (Wind Controlled)

SIMPSON

Strong-Tie

Anchor Designer™ Software Version 3.0.7947.2

Company:	Date:	9/14/2022
Engineer:	Page:	2/5
Project:		
Address:		
Phone:		
E-mail:		

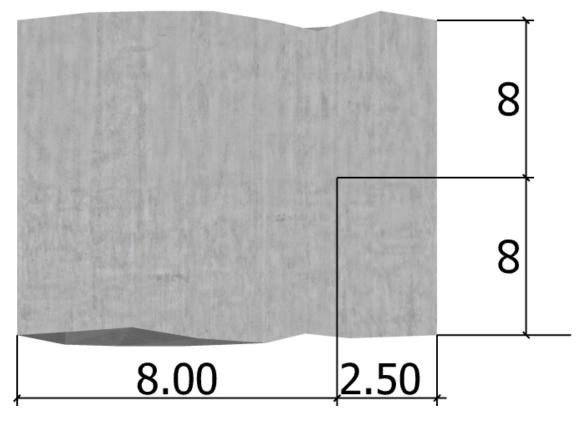

Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

N_{ua} [lb]: 5725 V_{uax} [lb]: 0 V_{uay} [lb]: 0

<Figure 1>

Post Installed HDU 8 Uplift Capacity (Wind Controlled)



Anchor Designer™ Software Version 3.0.7947.2

Company:	Date:	9/14/2022
Engineer:	Page:	3/5
Project:		
Address:		
Phone:		
E-mail:		

<Figure 2>

IPSON Anchor Designer™	Company:	Date:	9/14/2022
	Engineer:	Page:	4/5
Software	Project:		•
Version 3.0.7947.2	Address:		
	Phone:		
	E-mail:		

3. Resulting Anchor Forces

SI

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	5725.0	0.0	0.0	0.0
Sum	5725.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 5725

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

Nsa (lb)	ϕ	ϕN_{sa} (lb)	
35150	0.75	26363	

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

$N_b = k_c \lambda_a \sqrt{f'_c}$	h _{ef} ^{1.5} (Eq. 17.4.2	2.2a)						
Kc	λa	f'c (psi)	hef (in)	N _b (lb)				
17.0	1.00	2500	12.000	35334				
$\phi N_{cb} = \phi \left(A_N \right)$	c / A _{Nco}) Ψed,N Ψc,I	$_N \Psi_{cp,N} N_b$ (Sec. 1	7.3.1 & Eq. 17.4	4.2.1a)				
A_{Nc} (in ²)	A_{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ed,N}$	Ψc,N	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕN_{cb} (lb)
378.00	1296.00	2.50	0.742	1.00	1.000	35334	0.75	5733
	-	Anchor in Tens	ion (Sec. 17.4	<u>.5)</u>				
	rt-termKsat(f ² c/2,50		f' (noi)					
τ _{k,cr} (psi)	f _{short-term}	Ksat	f'c (psi)	n	$\tau_{k,cr}$ (psi)			
1219	1.00	1.00	2500	0.24	1219			
$N_{ba} = \lambda_{a} \tau_{cr} \pi \theta$	<i>d_ah_{ef}</i> (Eq. 17.4.5	5.2)						
λa	$ au_{cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{ba} (lb)				
1.00	1219	1.00	12.000	45955				
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψed,Na Ψcp	_{,Na} N _{ba} (Sec. 17.	3.1 & Eq. 17.4.5	ō.1a)				
A _{Na} (in²)	ANao (in²)	c _{Na} (in)	Ca,min (in)	$\Psi_{ed,Na}$	$arPsi_{cp,Na}$	N _{ba} (lb)	ϕ	<i>∳N</i> a (lb)
273.66	679.27	13.03	2.50	0.758	1.000	45955	0.65	9117

Anchor Designer™ Software Version 3.0.7947.2

Company:	Date:	9/14/2022
Engineer:	Page:	5/5
Project:	-	
Address:		
Phone:		
E-mail:		

<u>11. Results</u>

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (Ib)	Design Strength, øNn (lb)	Ratio	Status
Steel	5725	26363	0.22	Pass
Concrete breakout	5725	5733	1.00	Pass (Governs)
Adhesive	5725	9117	0.63	Pass

SET-3G w/ 1"Ø F1554 Gr. 36 with hef = 12.000 inch meets the selected design criteria.

12. Warnings

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

SIMPSON Strong-Tie

Strong-Drive[®] SDWS TIMBER Screw

Structural Wood-to-Wood Connections Including Ledgers, Indoor/Outdoor Projects

Designed to provide an easy-to-install, high-strength alternative to through-bolting and traditional lag screws. The Strong-Drive SDWS Timber screws are ideal for the contractor and do-it-yourselfer alike. *Double-barrier coating provides corrosion resistance equivalent to hot-dip galvanization, making it suitable for certain exterior and preservative-treated wood applications, as described in the evaluation report.*

Codes/Standards: IAPMO-UES ER-192, State of Florida FL13975

US Patent 9,523,383

For more information, see p. 53, C-F-2019 Fastening Systems Catalog

SDWS Timber Screw — Allowable Shear Loads — Douglas Fir–Larch and Southern Pine Lumber

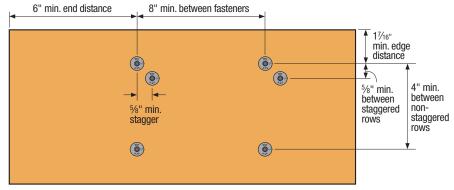
0:		Thursd	Reference DFL/SP Allowable Shear Loads (lb.)								
Size Model Dia.x L No. (in.)	Thread Length (in.)	th Wood Side Member Thickness (in.)									
		()	1.5	2	2.5	3	3.5	4	4.5	6	8
0.22 x 3	SDWS22300DB	1 1⁄2	255	—						—	—
0.22 x 4	SDWS22400DB	2%	405	405	305	—	—	—	—	—	—
0.22 x 5	SDWS22500DB	2¾	405	405	360	360	325	—	_	_	_
0.22 x 6	SDWS22600DB	2¾	405	405	405	405	365	365	355	—	—
0.22 x 8	SDWS22800DB	2¾	405	405	405	405	395	395	395	395	_
0.22 x 10	SDWS221000DB	2¾	405	405	405	405	395	395	395	395	395

See footnotes below.

SDWS Timber Screw — Allowable Shear Loads — Spruce-Pine-Fir and Hem-Fir Lumber

0:		Thursday			Referen	ice SPF/HF	Allowable	Shear Lo	ads (lb.)			
Size Dia.x L (in.)	Model No.	Thread Length (in.)	Wood Side Member Thickness (in.)									
()		()	1.5	2	2.5	3	3.5	4	4.5	6	8	
0.22 x 3	SDWS22300DB	1 1⁄2	190	—	—	—	—	—	—	—	_	
0.22 x 4	SDWS22400DB	23⁄8	385	285	215	—		—				
0.22 x 5	SDWS22500DB	2¾	405	290	290	290	195	—				
0.22 x 6	SDWS22600DB	2¾	405	365	365	365	310	310	210			
0.22 x 8	SDWS22800DB	2¾	405	365	365	365	310	310	280	280	_	
0.22 x 10	SDWS221000DB	2¾	405	365	365	365	310	310	280	280	280	

1. All applications are based on full penetration into the main member. Full penetration is the screw length minus the side member thickness.


2. Allowable loads are shown at the wood load duration factor of $C_D = 1.0$. Loads may be increased for load duration per the building code up to a $C_D = 1.6$. Tabulated values must be multiplied by all applicable adjustment factors per the NDS.

3. Minimum fastener spacing requirements to achieve table loads: 6" end distance, 17/16" edge distance, %" between staggered rows of fasteners, 4" between non-staggered rows of fasteners and 8" between fasteners in a row.

4. For in-service moisture content greater than 19%, use $C_{M} = 0.7$.

5. Loads are based on installation into the side grain of the wood with the screw axis perpendicular to the face of the member.

Strong-Drive° SDWS TIMBER Screw (cont.)

SDWS Timber Screw Spacing Requirements

SDWS Timber Screw — Allowable Withdrawal Loads — Douglas Fir–Larch, Southern Pine, Spruce-Pine-Fir and Hem-Fir Lumber

Model	Fastener Thread Length Length		Reference Design Valu	Withdrawal e, W (lb./in.)	Max. Reference Withdrawal Design Value, W _{max} (lb.)		
No.	(in.)	(in.)	DFL and SP Main Member	HF and SPF Main Member	DFL and SP Main Member	HF and SPF Main Member	
SDWS22300DB	3	1 1⁄2	164	151	245	225	
SDWS22400DB	4	23⁄8	179	160	425	380	
SDWS22500DB	5	2¾	214	187	590	495	
SDWS22600DB	6	2¾	214	187	590	495	
SDWS22800DB	8	2¾	214	187	590	495	
SDWS221000DB	10	2¾	214	187	590	495	

1. The tabulated reference withdrawal design value, W, is in pounds per inch of the thread penetration into the side grain of the main member.

2. The tabulated reference withdrawal design value, W_{Max}, is in pounds where the entire thread length must penetrate into the side grain of the main member.

3. Tabulated reference withdrawal design values, W and W_{Max} , are shown at a $C_D = 1.0$. Loads may be increased for load duration per the building code up to a $C_D = 1.6$. Tabulated values must be multiplied by all applicable adjustment factors from the NDS as referenced in the IBC or IRC.

4. Embedded thread length is that portion held in the main member including the screw tip.

5. Values are based on the lesser of withdrawal from the main member or pull-through of a 1 1/2" side member.

6. For in-service moisture content greater than 19%, use $C_M = 0.7$.

SIMPSON

Strong-Tie

SIMPSON Strong-Tie

Strong-Drive[®] SDWS **TIMBER** Screw with Gypsum Board Interlayer(s)

The Strong-Drive SDWS Timber screw may be installed with one or two layers of %" gypsum board. This layer of gypsum is to be located between the side member and main member for a standard connection. See the tables below for the required screw lengths and allowable loads for these applications. Loads are derived from assembly testing based on ICC-ES AC233.

SDWS Timber Screw — Douglas Fir–Larch and Southern Pine Lumber Allowable Single Shear Loads with One Layer of %" Gypsum Board

		_			Referen	ce DFL/SF	Allowable	Allowable Shear Loads (lb.)					
Size (in.)	Model No.	Thread Length (in.)	th Wood Side Member Thickness (in.)										
		()	1.5	2.0	2.5	3.0	3.5	4.0	4.5	6.0	8.0		
0.22 x 4	SDWS22400DB	2.375	265	_	_	_	_		_	—			
0.22 x 5	SDWS22500DB	2.75	265	265	235	—	—	—		—	—		
0.22 x 6	SDWS22600DB	2.75	265	265	265	265	235			—			
0.22 x 8	SDWS22800DB	2.75	265	265	265	265	255	255	255	—	_		
0.22 x 10	SDWS221000DB	2.75	265	265	265	265	255	255	255	255	_		

See footnotes on next page.

SDWS Timber Screw — Douglas Fir–Larch and Southern Pine Lumber Allowable Single Shear Loads with Two Layers of %" Gypsum Board

		Thursd		Reference DFL/SP Allowable Shear Loads (lb.)									
Size (in.)	Model No.	Thread Length (in.)	Wood Side Member Thickness (in.)										
		()	1.5	2.0	2.5	3.0	3.5	4.0	4.5	6.0	8.0		
0.22 x 4	SDWS22400DB	2.375	_	_	_	_	_	_	_	_			
0.22 x 5	SDWS22500DB	2.75	265	265	—	—	—	—	—	—	—		
0.22 x 6	SDWS22600DB	2.75	265	265	265	265	_	_	_	_			
0.22 x 8	SDWS22800DB	2.75	265	265	265	265	255	255	255	—	—		
0.22 x 10	SDWS221000DB	2.75	265	265	265	265	255	255	255	255			

See footnotes on next page.

Strong-Drive° SDWS **TIMBER** Screw with Gypsum Board Interlayer(s) (cont.)

SDWS Timber Screw — Spruce-Pine-Fir and Hem-Fir Lumber Allowable Single Shear Loads with One Layer of 5%" Gypsum Board

			Reference SPF/HF Allowable Shear Loads (lb.)										
Size (in.)	Model No.	Thread Length											
		(in.)	1.5	2.0	2.5	3.0	3.5	4.0	4.5	6.0	8.0		
0.22 x 4	SDWS22400DB	2.375	250	_		—	_	—	—	—	—		
0.22 x 5	SDWS22500DB	2.75	260	190	190	—	—	—	—	—	—		
0.22 x 6	SDWS22600DB	2.75	260	235	235	235	200	—	—	—	_		
0.22 x 8	SDWS22800DB	2.75	260	235	235	235	200	200	180	—	—		
0.22 x 10	SDWS221000DB	2.75	260	235	235	235	200	200	180	180	_		

See notes below.

SDWS Timber Screw — Spruce-Pine-Fir and Hem-Fir Lumber Allowable Single Shear Loads with Two Layers of %" Gypsum Board

		Thread	Reference SPF/HF Allowable Shear Loads (lb.)										
Size (in.)	Model No.	Thread Length											
		(111.)	1.5	2.0	2.5	3.0	3.5	4.0	4.5	6.0	8.0		
0.22 x 4	SDWS22400DB	2.375	—	_	_		_				—		
0.22 x 5	SDWS22500DB	2.75	260	190	—	—	—	—	—	—	—		
0.22 x 6	SDWS22600DB	2.75	260	235	235	235	—	_	_	—	_		
0.22 x 8	SDWS22800DB	2.75	260	235	235	235	200	200	180		—		
0.22 x 10	SDWS221000DB	2.75	260	235	235	235	200	200	180	180	_		

1. All applications are based on full penetration which equals fastener length minus side member thickness.

2. Allowable loads are shown at the wood load duration factor of $C_D = 1.0$. Loads may be increased for load duration per the building code up to a $C_D = 1.6$. Tabulated values must be multiplied by all applicable adjustment factors per the NDS.

3. Minimum fastener spacing requirements: 6" end distance, 17/6" edge distance, 5%" between staggered rows of fasteners, 4" between non-staggered rows of fasteners and 8" between fasteners in a row. Refer to SDWS Spacing Requirements figure on p. 23.

4. For in-service moisture content greater than 19% use $C_M = 0.7$.

5. Gypsum board must be attached as required per the building code.

Wood and Engineered-Wood Fastening

Ledger Structural Fastening Applications

Strong-Drive[®] SDWS **TIMBER** Screw in Ledger-to-Stud Applications

Strong-Drive SDWS Timber screws may be used to attach a ledger to the narrow face of nominal 2x lumber studs according to the following table. Tests and analyses were performed in accordance with ICC-ES Acceptance Criteria AC233.

For more information, see p. 53, C-F-2019 Fastening Systems Catalog

SDWS Timber Screw — Allowable Shear Loads for Ledger to Studs

Size	Model No.	Ledger Nominal	Number of	Referen	eference Allowable Shear Load (lb.)			
(in.)	Model No.	Size (in.)	Screws per Stud	SP	DFL	SPF/HF		
		2x6	2	785	630	565		
0.22 x 4	SDWS22400DB	2x8	3	1,060	890	855		
		2x10	4		1,040	1,040		

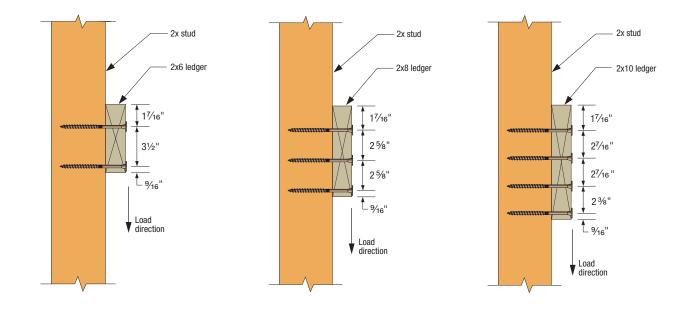
1. Allowable loads shall be limited to parallel-to-grain loaded solid sawn main members (minimum 2" nominal). Wood side members shall be loaded perpendicular to grain.

2. Allowable loads are based on DFL, SPF/HF, and SP wood members having a minimum specific gravity of 0.50, 0.42, and 0.55, respectively. Where the side and main members have different specific gravities, the lower values shall be used.

3. Allowable loads are shown at the wood load duration factor of $C_D = 1.00$. Loads may be increased for load duration as permitted by the building code up to a $C_D = 1.60$. All adjustment factors shall be applied per the 2012 National Design Specification (NDS). For in-service moisture content greater than 19%, use $C_M = 0.70$.

4. Fasteners shall be centered in the stud and spaced as shown in the figure. The stud minimum end distance is 6" when loaded toward the end and 2½" when loaded away from the end. The ledger end distance is 6" for full values. For ledger end distances between 2" and 6" use 50% of the table loads. For end distances between 2" and 4", predrill using a 5/2" bit for SDWS.

5. Screws may be installed with an intermediate layer of wood structural panel between the side and main member provided the wood structural panel is fastened to the main member per code and the minimum screw penetration of 21/2" into the main member (excluding the wood structural panel) is met. Longer lengths of the screw series may be used.


6. For LRFD values, the reference connection design values shall be adjusted in accordance with the NDS-2018, section 11.3.

7. For 2x10 SP ledgers, use the number of screws and allowable loads of the 2x8 SP ledger.

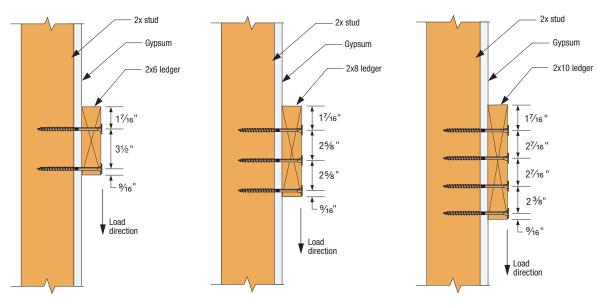
C-F-2019TECHSUP @ 2019 SIMPSON STRONG-TIE COMPANY INC

8. For 2x8 ledgers with two screws, use 2x6 values. For 2x10 ledgers with three screws, use 2x8 values. Spacings and edge distances shown in the figure are minimum dimensions.

9. For loads in the opposite direction from that shown in the figure, use the table values multiplied by: 0.50 for two-screw connections, 0.67 for three-screw connections, and 0.75 for four-screw connections.

SIMPSON

Strong-Tie


Strong-Drive° SDWS **TIMBER** Screw with Gypsum Board Interlayer(s) (cont.)

SDWS Timber Screw — Allowable Shear Loads for Ledger Attachment to Studs with One or Two Layers of Gypsum Board

Size	Model No.	Ledger Size	Number of Screws	Refere	ence Allowable Shear Lo	ad (lb.)
(in.)	Model No.	Leuger Size	per Stud	SP	DFL	SPF/HF
		2x6	2	510	410	365
0.22 x 6	22 x 6 SDWS22600DB	2x8	3	690	580	555
		2x10	4	—	675	675

- Allowable loads shall be limited to parallel-to-grain loaded solid sawn main members (minimum 2" nominal). Wood side members shall be loaded perpendicular to grain.
- Allowable loads are based on DFL, SPF/HF, and SP wood members having a minimum specific gravity of 0.50, 0.42, and 0.55, respectively. Where the side and main members have different specific gravities, the lower values shall be used.
- 3. Allowable loads are shown at the wood load duration factor of $\rm C_{\rm p}=1.00.$ Loads may be increased for load duration as permitted by the building code up to a $\rm C_{\rm p}=1.60.$ All adjustment factors shall be applied per the National Design Specification (NDS). For in-service moisture content greater than 19%, use $\rm C_{\rm M}=0.70.$
- 4. Fasteners shall be centered in the stud and spaced as shown in the figure. The ledger minimum end distance is 6". The stud minimum end distance is 6" when the load is toward the end and 2½" when the load is away from the end.
- 5. Screws may be installed with an interlayer of wood structural panel (WSP) between the framing and the gypsum panel(s). When a WSP is present,

- it shall be a maximum of $\frac{1}{2}$ " thick, adjacent to the framing and fastened directly to the framing per code. Minimum screw penetration into the framing of $2\frac{1}{2}$ " shall be required; longer screw lengths shall be used to achieve the required penetration.
- For LRFD values, the reference connection design values shall be adjusted in accordance with NDS-18, section 11.3.
- For 2x10 SP ledgers, use the number of screws and allowable loads of the 2x8 SP ledger.
- 8. For 2x8 ledgers with two screws, use 2x6 values. For 2x10 ledgers with three screws, use 2x8 values. Spacings and edge distances shown in the figure are minimum dimensions.
- 9. For loads in the opposite direction from that shown in the figure, use the table values multiplied by: 0.50 for two-screw connections, 0.67 for three-screw connections, and 0.75 for four-screw connections.
- 10. Gypsum board must be attached as required per the building code.
- 11. For ledger end distances between 2" and 6", use 50% of load and predrill with 12" drill bit.

Note: Minimum stud dimension is nominal 2 x 6.

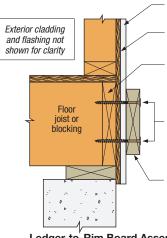
Notes to Installer Regarding the Attachment of Ledgers to Studs:

The screws must be installed into the middle of the stud with a tolerance of %6" either side of center. Various methods can be used to ensure proper placement of the screws in the stud including snapping a chalk line, using a stud finder or prerocking (attaching only a strip of gypsum at the ledger location until the ledger is fastened to the studs). If proper screw placement into the stud cannot be achieved in the field, blocking should be installed between studs to receive and support the ledger screws.

Ledger Structural Fastening Applications

Strong-Drive[®] SDWS **TIMBER** Screw with Gypsum Board Interlayer(s) (cont.)

SDWS Timber Screw - 2015 and 2018 IRC Compliant Spacing for a Sawn Lumber Ledger to Rim Board with One or Two Lavers of 5%" Gypsum Board


	<u> </u>		Maximum Deck Joist Span									
Loading	Nominal Ledger		Rim Board	Up to	Up to	Maximur Up to	n Deck Jo Up to	Dist Span Up to	Up to	Up to		
Condition	Thickness	Model No.	Material and Minimum Size	6 ft.	8 ft.	10 ft.	12 ft.	14 ft.	16 ft.	18 ft.		
	(in.)				Maximum On-Center Spacing of Fasteners (in.)							
		For one layer of gypsum board use:	1" OSB 1" LVL	13	10	8	6	6	5	4		
40 psf Live 10 psf Dead		SDWS22400DB For two layers of	1 1⁄8" OSB 1 5⁄16" LVL 1 1⁄4" LSL	15	11	9	8	7	6	5		
	gypsum board use: SDWS22500DB	2x SP, DFL 2x SPF, HF	20	15	12	10	9	8	7			
	100 psf Live 10 psf Dead 2x	For one layer of gypsum board use:	1" OSB 1" LVL	6	4	4	—	—		—		
100 psf Live 10 psf Dead		SDWS22400DB For two layers of	1 1⁄8" OSB 1 5⁄16" LVL 1 1⁄4" LSL	8	6	5	4	—		—		
	gypsum board use: SDWS22500DB	2x SP, DFL 2x SPF, HF	9	7	5	5	4	—	—			
		1" OSB 1" LVL	7	5	4	—	—	—	—			
100 psf Live 10 psf Dead		For one layer of gypsum board use: SDWS22600DB	1 1⁄8" OSB 1 5⁄16" LVL 1 1⁄4" LSL	7	5	4	—	—	—	—		
			2x SP, DFL 2x SPF, HF	7	5	4	—	—	_	—		
		For one layer of gypsum board use:	1" OSB 1" LVL	9	7	6	5	4	—	—		
60 psf Live 10 psf Dead	2x	SDWS22400DB For two layers of	1 1⁄8" OSB 1 5⁄16" LVL 1 1⁄4" LSL	11	8	7	5	5	4	4		
		gypsum board use: SDWS22500DB	2x SP, DFL 2x SPF, HF	14	11	9	7	6	5	5		
			1" OSB 1" LVL	14	11	9	7	6	5	5		
40 psf Live 10 psf Dead	(2) 2x	For one layer of gypsum board use: SDWS22600DB	1 1⁄8" OSB 1 5⁄16" LVL 1 1⁄4" LSL	15	11	9	8	7	6	5		
			2x SP, DFL 2x SPF, HF	15	11	9	8	7	6	5		
			1" OSB 1" LVL	10	8	6	5	5	4	—		
60 psf Live 10 psf Dead	(2) 2x	For one layer of gypsum board use: SDWS22600DB	1 1⁄8" OSB 1 5⁄16" LVL 1 1⁄4" LSL	11	8	6	5	5	4	4		
			2x SP, DFL 2x SPF, HF	11	8	6	5	5	4	4		

1. Sawn rim board shall be spruce-pine-fir, hem-fir, Douglas fir-larch, or southern pine species. Ledger shall be hem-fir, Douglas fir-larch, or southern pine species.

2. Fastener spacings are based on the lesser of single fastener ICC-ES AC233 testing of the Strong-Drive® SDWS screw with a safety factor of 5.0 or ledger assembly testing based on ICC-ES AC13 with a factor of safety of 3.0. Spacing does NOT include NDS wet service factor adjustment.

3. Multiple ledger plies shall be fastened together per code independent of the SDWS screws.

- 4. SDWS screw spacing values are equivalent to 2018 IRC Table R507.9.1.3(1) and 2012/2015 IRC Table R507.2. The table also provides SDWS screw spacing for a wider range of materials commonly used for rim boards, and an alternate loading condition as required by some jurisdictions.
- 5. Rows of screws shall be vertically offset and evenly staggered. Screws shall be placed 11/2" to 2" from the top and bottom of the ledger or rim board with 3" minimum and 6" maximum between rows and spaced per the table. End screws shall be located 6" from the end and at 11/2" to 2" from the bottom of the ledger. For screws located at least 2" but less than 6" from the end, use 50% of the load per screw and 50% of the table spacing between the end screw and the adjacent screw, and for screws located between 2" and 4" from the end, predrill using a 5/32" drill.
- 6. The design installation permits a wood structural panel (WSP) interlayer in addition to one or two layers of gypsum board. If present, the WSP shall be a maximum of 1/2" thick, adjacent to the framing and fastened directly to the framing per the code.
- 7. Gypsum board must be attached as required per the building code.

Gypsum

panel sheathing /2" max. thickness fastened per code

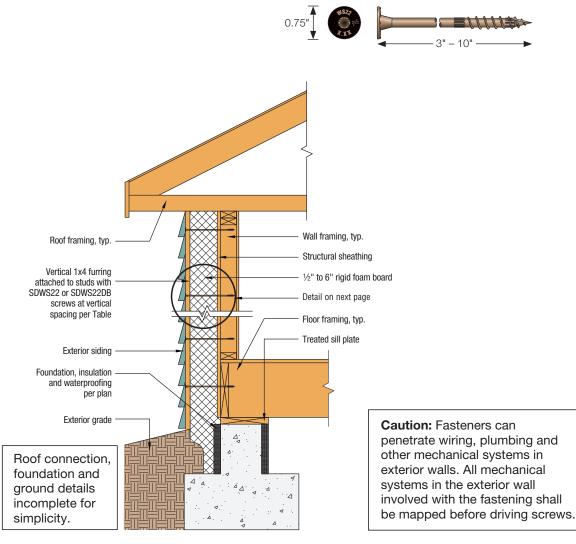
Rim board per table

- SDWS wood screws stagger vertically
- spaced in accordance with table

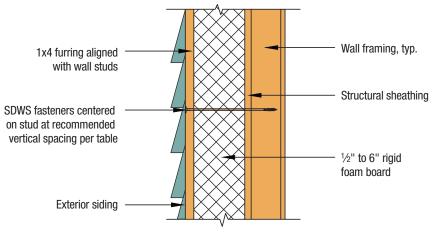
2" nominal deck ledger shown (double 2" ledger similar)

Ledger-to-Rim Board Assembly (wood-framed lower floor acceptable, concrete wall shown for illustration purposes)

Wood structural


Exterior Foam-to-Wood Fastening

Strong-Drive[®] SDWS **TIMBER** Screw for Attaching Exterior Foam Insulation


Simpson Strong-Tie[®] Strong-Drive SDWS Timber screws may be used for installing exterior rigid-foam board insulation over wood structural panel (WSP) sheathing. Each fastener installs through furring strips, rigid-foam board and WSP sheathing into the wood wall stud framing. The fasteners do not typically require predrilling. Preservative-treated wood suitable for dry-service (AWPA UC1, UC2, UC3A) and untreated wood may be used depending on the protection needs of the construction. The SDWS products with "DB" in the model number have a double-barrier coating that provides corrosion resistance equivalent to hot-dip galvanization, while the products without "DB" in the model number can only be used in conditions with dry-service and no wood treatment chemicals. The table on p. 53 provides recommended spacing for fastening to vertical furring strips through ½" to 6" of rigid foam insulation board into each wall stud. The SDWS22DB and SDWS22 screws were evaluated as alternate threaded fasteners using ICC-ES AC233 and are the subject of IAPMO-UES ER-192. The Strong-Drive SDWS22DB Structural Wood screws were evaluated for corrosion resistance using ICC-ES AC257.

For more information, see p. 53, C-F-2019 Fastening Systems Catalog

Exterior Foam-to-Wood Fastening

Strong-Drive° SDWS TIMBER Screw for Attaching Exterior Foam Insulation (cont.)

Furring and Rigid Foam Attachment Detail

Recommended Vertical Fastener Spacing

C-F-2019TECHSUP @ 2019 SIMPSON STRONG-TIE COMPANY INC

Size	Model No.	Foam Thickness	Stud Spacing		m Allowable Cladding Weight to be Supported (psf)				
(in.)		(in.)	(in.)	≤ 20	25	30			
0.220 x 4	SDWS22400DB	1/2	16						
0.220 X 4	3DW3ZZ400DB	72	24						
0.220 x 5	SDWS22500DB	1 to 1½	16		24" o.c.				
0.220 X J	301032230000	1 10 1 1⁄2	24						
0.220 x 6	SDWS22600DB	2	16	24" o.c.		24" o.c.			
0.220 X 0	301032200000	۷.	24	24 0.0.					
0.220 x 8	SDWS22800DB	4	4	4					
0.220 X 0	SDWS22800	4	24						
0.220 x 10	SDWS221000DB	6	16						
0.220 x 10	SDWS221000	0	24		18" o.c.	18" o.c.			

1. Caution: Fasteners can penetrate wiring, plumbing and other mechanical systems in exterior walls. All mechanical systems in the exterior wall involved with the fastening shall be mapped before driving screws.

2. Foam sheathing shall have a minimum compressive strength of 15 psi in accordance with ASTM C578 or ASTM C1289.

3. Wood wall framing (studs) shall be a minimum of 2" nominal thickness. Wood framing and furring shall be a minimum sprucepine-fir species with specific gravity of 0.42 or greater. Table assumes furring strip thickness of ¾" and full thread embedment in the framing member.

4. Wood framing, furring and WSP sheathing shall meet the design requirements in accordance with the applicable building codes. WSP sheathing shall be fastened to the framing as required by the applicable building code.

5. Each fastener is capable of resisting 172 lb. of out-of-plane wind loading ($C_D = 1.60$) with no further increase allowed.

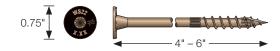
6. Spacing recommendations are based on a loading that produced 0.015" of assembly movement with 6"-thick rigid foam board insulation.

7. Maximum allowable cladding weight shall be the additive weight of furring, cladding including foam insulation, environmental effects (i.e. ice) and other supported materials.

8. Metal fasteners conduct heat, and it is recommended that exposed screw heads are covered with foam and sealed.

9. Screws shall be installed such that they close gaps between connected components. Furring and sheathing shall provide the required thickness and performance for siding manufacturer installation instructions.

SIMPSOI


Strong-Ti

Sole/Top Plate-to-Rim Fastening

Strong-Drive[®] SDWS TIMBER Screw

Sole-to-Rim Connections

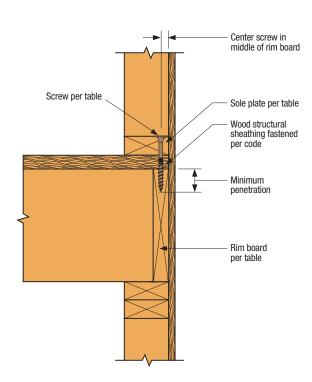
For more information, see p. 53, C-F-2019 Fastening Systems Catalog

SDWS Timber Screw — Allowable Shear Loads for Sole-to-Rim Connections

			Minimum	Reference Allowable Loads (lb.) per Screw									
Size (in.)	Model No.	Inickness		tion 2x DFL/SP Rim Board		2x SPF/HF Rim Board		1 ¼" Min. LVL Rim Board		1 ¼" Min. LSL Rim Board			
		(in.) (in.)	Rim Board (in.)	DFL/SP Sole Plate	SPF/HF Sole Plate	DFL/SP Sole Plate	SPF/HF Sole Plate	DFL/SP Sole Plate	SPF/HF Sole Plate	DFL/SP Sole Plate	SPF/HF Sole Plate		
0.22 x 4	SDWS22400DB	2x	1.75	345	295	295	295	275	275	275	275		
0.22 x 5	SDWS22500DB	2x	2	345	295	295	295	275	275	275	275		
0.22 x 6	SDWS22600DB	2x, 3x, (2)-2x	2	345	295	295	295	275	275	275	275		

1. Allowable loads are based on testing per ICC-ES AC233 and are limited to parallel-to-grain loading.

2. Allowable loads are shown at the wood load duration factor of $C_D = 1.00$. Loads may be increased for load duration by the building code up to a $C_D = 1.60$.


3. Minimum spacing of the SDWS is 6" o.c., minimum end distance is 6", and minimum edge distance is 5%".

4. Wood structural panel up to 1 1/6" thick (2%2" for SDWS22400DB) is permitted between the sole plate and rim board provided it is fastened to the rim board per code and the minimum penetration of the screw into the rim board is met.

5. A double 2x sole plate/top plate is permitted provided it is independently fastened per the code and the minimum screw penetration per the table is met.

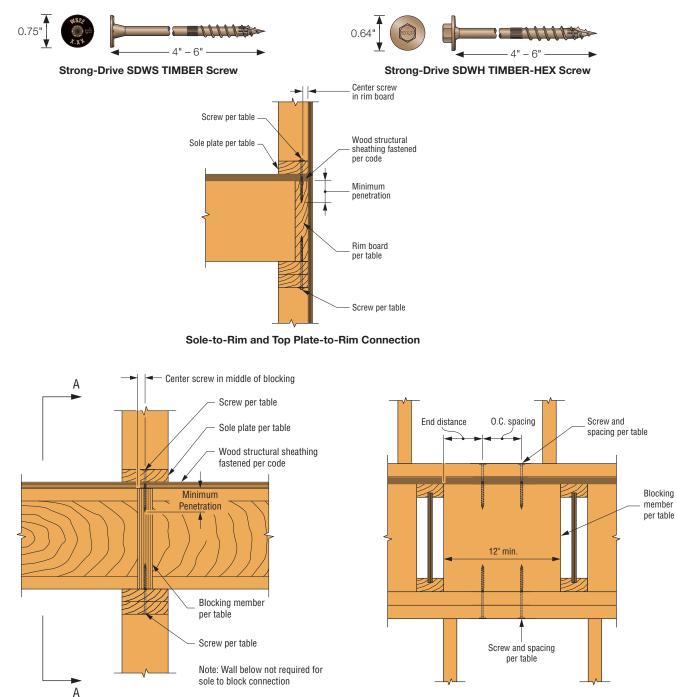
6. Minimum rim board height shall be 91/4" when using SDWS screws for sole and top plate fastening.

7. Sole-to-rim loads can be achieved without a wall below.

Sole-to-Rim Board Assembly (Other fasteners not shown for clarity)

SIMPSO

Strong-Tie


Sole/Top Plate-to-Rim Fastening

SIMPSON Strong-Tie

Strong-Drive[®] SDWS **TIMBER** Screw and SDWH **TIMBER-HEX** Screw

Sole Plate/Top Plate to Rim/Blocking Shear Load Transfer with Reduced Fastener Spacing

Strong-Drive SDWS Timber and Strong-Drive SDWH Timber-Hex structural screws may be used to attach a sole plate or top plate to a rim board and blocking material according to the following details and loading information. Allowable loads are based on testing per ICC-ES AC233 and are limited to parallel-to-grain or in-plane-shear loading. Each test assembly consisted of multiple fasteners, a sole plate, sheathing and a rim board or blocking material. Please see the following for allowable load tables.

Sole-to-Block and Top Plate-to-Block Connection

Sole/Top Plate-to-Rim Fastening

Strong-Drive[®] SDWS **TIMBER** Screw and SDWH **TIMBER-HEX** Screw (cont.)

SDWS Timber/SDWH Timber-Hex Single-Fastener, Allowable Loads for Sole-to-Rim (or Blocking) and Top Plate-to-Rim (or Blocking) Connection

			3,	Reference Allowable Shear Loads (lb.) per Screw DFL/SP Sole Plate and Top Plate									
Min.	Sole PI	ata		Min.			Rim and Bloc	king Material					
Screw Length	or Top Pla Nominal Th	ate	Model No.	Penetration into Rim or Block		Min. ./SP	1 ¼" Min. LVL	1¾" Min. LVL	1 ¼" Min. LSL	1¾" Min. LSL			
				(in.)	6" O.C. 6" End Distance	3" O.C. 3" End Distance	6" O.C. 6" End Distance	4" O.C. 4" End Distance	6" O.C. 6" End Distance	4" O.C. 4" End Distance			
4		2x	SDWH19400DB	1.75	315	220	255	260	275	230			
4		2x	SDWS22400DB	1.75	345	240	275	305	275	350			
5		2x	SDWS22500DB	2	345	240	275	360	275	345			
6		Зx	SDWH19600DB	2	315	225	255	260	275	230			
6	Sole Plate	Зx	SDWS22600DB	2	345	240	275	360	275	345			
6		(2) 2x	SDWH19600DB	1.75	315	220	255	260	275	230			
6		(2) 2x	SDWS22600DB	1.75	345	240	275	305	275	350			
8		(2) 2x	SDWH19800DB	2	315	225	255	260	275	230			
8		(2) 2x	SDWS22800DB	2	345	240	275	360	275	345			
5		(2) 2x	SDWS22500DB	2	345	240	275	360	275	345			
6	Top Plate	(2) 2x	SDWH19600DB	2	315	225	255	260	275	230			
6		(2) 2x	SDWS22600DB	2	345	240	275	360	275	345			

1. Allowable loads are shown at the wood load duration factor of $C_D = 1.00$. Loads may be increased for load duration by the building code up to a $C_D = 1.60$.

2. For 2x solid sawn members and 11/4" LVL or LSL members the minimum edge distance is 5%". For 13/4" LVL or LSL members the minimum edge distance is 7%".

3. Wood structural panel up to 1 1%" thick (21 fasteners) is permitted between sole plate and rim board provided it is fastened to the rim board per code and the minimum penetration of the screw into the rim/block is met.

4. Double sole plate and top plate fastened minimum per code.5. Minimum rim height is 9¼" when using fasteners on the top and bottom. Sole to blocking loads can be achieved with or without a wall below.

6. For assemblies using SPF/HF lumber for the sole plate, top plate, or rim/blocking members, multiply table values by 0.86.

Spacing for Multiple Rows of Fasteners

Material	0.C. Spacing/ End Distance Spacing (in.)	Row Offset (in.)	Row Stagger (in.)
Solid Sawn	3	1 1/4	1 1/4
Sulu Sawii	6	1 74	1 74
	4	1 3⁄4	1¾
LVL or LSL	6	1 1⁄4	1 1⁄4

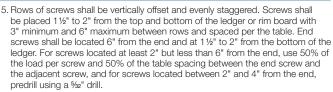
 The material must be wide enough to accommodate minimum edge distance, row offset and row stagger.

Deck Construction – Ledgers

Strong-Drive[®] SDWS TIMBER Screw

For more information, see p. 53, C-F-2019 Fastening Systems Catalog

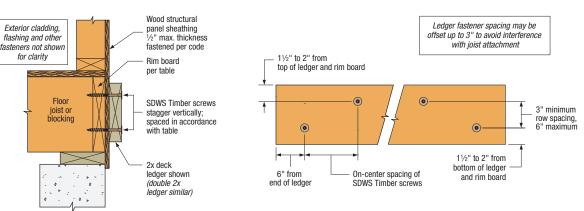
SDWS Timber Screw — 2015 and 2018 IRC Compliant Spacing for a Sawn Lumber Deck Ledger-to-Rim Board


	Nominal Ledger Size (in.)	Size (in.)	Model No.	Rim Board	Maximum Deck Joist Span						
Loading Condition				Material and Minimum Size	Up to 6 ft.	Up to 8 ft.	Up to 10 ft.	Up to 12 ft.	Up to 14 ft.	Up to 16 ft.	Up to 18 ft.
Contraction						Maximum On-Center Spacing of Fasteners (in.)					
40 psf Live	2x	0.00	SDWS22400DB	1" OSB	14	10	0	7	0		F
				1" LVL	14	10	8	1	6	5	5
				1 1⁄8" OSB	16	12	10	8	7	6	5
10 psf Dead	ZX	0.22 x 4		1 5⁄16" LVL							
				11⁄4" LSL							
				2x SP, DFL — 2x SPF, HF	22	16	13	11	9	8	7
	2x	0.22 x 4	SDWS22400DB	1" OSB	10	7	6	5	4	4	—
				1" LVL		7					
60 psf Live				1 1⁄8" OSB	12	9	7	6	5	4	4
10 psf Dead				1 5⁄16" LVL							
				11⁄4" LSL							
				2x SP, DFL — 2x SPF, HF	15	12	9	8	7	6	5
	(2) 2x	0.22 x 5	SDWS22500DB	1" OSB	15	12	9	8	7	6	5
				1" LVL		12	9				
40 psf Live				1 1⁄8" OSB	16	12	10	8	7	6	5
10 psf Dead				1 5⁄16" LVL							
				11⁄4" LSL							
				2x SP, DFL — 2x SPF, HF	16	12	10	8	7	6	5
60 psf Live 10 psf Dead	(2) 2x	0.22 x 5	SDWS22500DB	1" OSB	11	8	7	6	5	4	4
				1" LVL		0	1				4
				1 1⁄8" OSB	12	9	7	6	5	4	4
				1 5⁄16" LVL							
				11⁄4" LSL							
				2x SP, DFL — 2x SPF, HF	12	9	7	6	5	4	4

1. SDWS screw spacing values are equivalent to 2018 IRC Table R507.9.1.3(1) and 2015 IRC Table R507.2. The table above also provides SDWS screw spacing for a wide range of materials commonly used for rim board, and an alternate loading condition as required by some jurisdictions.

2. Sawn lumber rim board shall be spruce-pine-fir, hem-fir, Douglas fir-larch, or southern pine species. Ledger shall be hem-fir, Douglas fir-larch, or southern pine species.

3. Fastener spacings are based on the lesser of single fastener ICC-ES AC233 testing of the Strong-Drive SDWS Timber screw with a safety factor of 5.0 or ICC-ES AC13 assembly testing with a factor of safety of 5.0. Spacing includes NDS wet service factor adjustment.


4. Multiple ledger plies shall be fastened together per code independent of the SDWS screws.

6. Structural sheathing between the ledger and rim board shall be a maximum of 1/2" thick and fastened per code.

7. See pp. 109-110 for ledger-to-rim attachment with 1/2" gap.

0.75"

(wood-framed lower floor acceptable, concrete wall shown for illustration purposes; other fasteners not shown for clarity.)

5

Deck Applications

SDWS Timber Screw Spacing Detail for Ledgers

Deck Construction – Ledgers

Strong-Drive[®] SDWH TIMBER-HEX and SDWS TIMBER Screw

2015 and 2018 IRC Compliant Spacing and Allowable Shear Loads for Fastening a Sawn Lumber Deck Ledger-to-Rim Board with 1/2" Gap

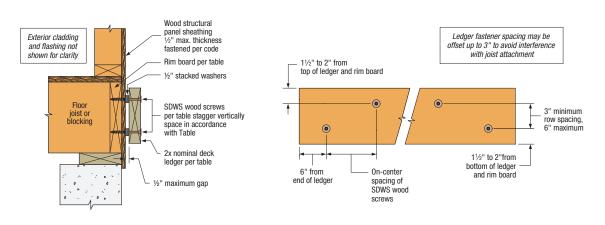


Table below lists the allowable shear loads for SDWS Timber screws and SDWH Timber-Hex screws when attaching a 2x ledger with up to 1/2" thickness of stacked washers to the listed rim board.

Single-Fastener Allowable Shear Loads for Fastening a Sawn Lumber Deck Ledger-to-Rim Board with 1/2" Gap

Nominal Ledger Size (in.)	Rim Board	Size (in.)	Model No.	Reference Allowable Load (lb.)	
2x	2x SPF, DFL, SP #2	0.220 x 4	SDWS22400DB	270	
	2X OFF, DFL, OF #2	0.195 x 4	SDWH19400DB	260	
	11/11.0	0.220 x 4	SDWS22400DB	255	
	11⁄8" LSL	0.195 x 4	SDWH19400DB	245	
	13/11//	0.220 x 4	SDWS22400DB	290	
	1¾" LVL	0.195 x 4	SDWH19400DB	255	

1. Sawn lumber 2x ledger shall have a minimum specific gravity of 0.42 (HF or SPF) and be grade No. 2 or better.

C-F-2019TECHSUP @ 2019 SIMPSON STRONG-TIE COMPANY INC

2. Rim board is to be dry lumber (specific gravity at least 0.42) or EWP rim board product (equivalent specific gravity of at least 0.42 for nails and screws installed in the face orientation).

3. Fastener spacings are based on the lesser of single fastener testing following ICC-ES AC233 or ledger assembly testing following ICC-ES AC13 using a safety factor of 5.0.

4. Screws shall be placed 11/2" to 2" from the top and bottom of the ledger board or rim board, 6" from the end of the ledger with 3" minimum and 6" maximum between rows. Minimum on-center spacing is 4".

5. Wood structural panel sheathing between the ledger and rim board shall be a maximum of 1/2" thick and fastened per code.

6. Screws shall be tightened such that the washer stack is tightly compressed between the ledger and the rim board.

7. Maximum 1/2" gap created by stacked hot-dip galvanized or stainless-steel 5/16" Type A plain washers (N-narrow) with an outside diameter equal to 0.688" and inside diameter equal to 0.344".

8. Allowable loads are shown at the wood load duration factor of $C_{2} = 1.0$. Loads may be increased for load duration per the building code up to a C_D = 1.6. Tabulated values must be multiplied by all applicable adjustment factors per the NDS, including wet service factor.

Deck Construction – Ledgers

Strong-Drive[®] SDWH **TIMBER-HEX** and SDWS **TIMBER** Screw (cont.)

2015 and 2018 IRC Compliant Spacing and Allowable Shear Loads for Fastening a Sawn Lumber Deck Ledger-to-Rim Board with ½" Gap

Strong-Drive[®] SDWS Timber screws and SDWH Timber-Hex screws are suitable for installing ledgers with up to $\frac{1}{2}$ " drainage gap between the ledger and the rim board. These fasteners do not require predrilling and have a double-barrier coating providing corrosion resistance equivalent to hot-dip galvanization. The gap is formed by stacking hot-dip galvanized or stainless-steel $\frac{1}{2}$ " Type A plain washers (0.688" outside diameter, 0.344" inside diameter) on the shank of the screws between the ledger and the rim board. Weather proofing shall be the responsibility of the installer. The table below lists the maximum on-center spacing of SDWS Timber screws and SDWH Timber-Hex screws when attaching a 2x ledger to the listed rim board of various widths with a maximum $\frac{1}{2}$ " gap between them.

Loading Condition: 40 PSF Live Load and 10 PSF Dead Load

		Size (in.)		Maximum Deck Joist Span						
Ledger Nominal Size	Rim Board Material		Model No.	Up to 6 ft.	Up to 8 ft.	Up to 10 ft.	Up to 12 ft.	Up to 14 ft.	Up to 16 ft.	Up to 18 ft.
(in.)	(in.)			Maximum On-Center Spacing of Fasteners (in.)						
2x	2x DFL, SP, SPF #2	0.220 x 4	SDWS22400DB	15	11	9	7	6	5	5
		0.195 x 4	SDWH19400DB	14	11	8	7	6	5	4
	1.125" LSL	0.220 x 4	SDWS22400DB	14	10	8	7	6	5	4
		0.195 x 4	SDWH19400DB	13	10	8	6	5	5	4
	1.75" LVL	0.220 x 4	SDWS22400DB	16	12	9	8	7	6	5
		0.195 x 4	SDWH19400DB	14	10	8	7	6	5	4

1. Sawn lumber ledger shall have minimum specific gravity of 0.42 (HF or SPF) and shall be grade No. 2 or better. Rim board is to be dry lumber (specific gravity at least 0.42) or EWP rim board product (equivalent specific gravity of at least 0.42 for nails and screws installed in the face orientation).

2. Fastener spacings are based on the lesser of single fastener testing following ICC-ES AC233 or ledger assembly testing following ICC-ES AC13 using a safety factor of 5.0. Spacing includes NDS wet service factor adjustment.

3. Screws shall be placed ¹¹/₂" to 2" from the top and bottom of the ledger board or rim board, 6" from the end of the ledger with 3" minimum and 6" maximum between rows. End screws shall be located near the bottom of the ledger. See figure on the following page.

4. Wood structural panel sheathing between the ledger and rim board shall be a maximum of 1/2" thick and fastened per code.

5. Screws shall be tightened such that the washer stacks are tightly compressed between the ledger and the rim board. 6. Maximum ½" gap formed by stacked hot-dip galvanized or stainless-steel 5/16" Type A plain washers (N-narrow) with a nominal outside

diameter of 0.688" and inside diameter of 0.344".

7. The fastener specifications in this table meet the prescriptive deck ledger attachment solutions and loading requirements per 2018 IRC Table R507.9.1.3(1) and Table R507.2 of the 2012 and 2015 IRC.

115

Deck Construction – Guard Posts

Strong-Drive[®] SDWS **TIMBER** Screw for Guard Post Installations

For more information, see p. 52, C-F-2019 Fastening Systems Catalog

Framed guard post installations fastened with SDWS Timber screws were tested in accordance with ICC-ES AC273 and met the 600 lb. concentrated ultimate load applied at the top of a single post in an outward direction and the post deflection limit at the 200 lb. design level. For a required uniform load of 150 plf in AC273 for guard and handrail systems, the screw was not tested as excepted for one- and two-family dwellings in IBC 2015 Section 1607.8.1. The following details were tested:

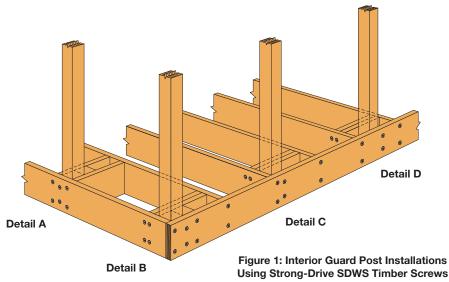
- Detail A: Interior Post on Rim Board
- Detail B: Interior Post at Corner
- Detail C: Interior Post on Rim Joist with Adjacent Joist
- Detail D: Interior Post on Rim Joist between Joists

The SDWS Timber screws are the subject of IAPMO-UES ER-192. The following table lists the SDWS Timber screw information and total quantity of fasteners required for each guard post detail. The guard post details are shown on pp. 116–118.

Code-Compliant Guard Post Connection Details Installation Scope:

For 36" Guard Post Height (above deck surface, refer to T-F-GRDPSTRL)

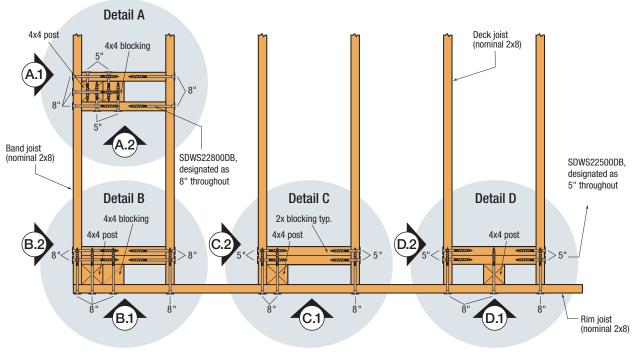
• Use Nominal 4" x 4" guard post


C-F-2019TECHSUP @ 2019 SIMPSON STRONG-TIE COMPANY INC

- Use Nominal 2" x 8" rim board/rim joist, 2x blocking and 4x blocking
- Framing lumber should be HF, DFL or SP, pressure treated with chemical retention not greater than UC4A
- Full-depth blocking required
- Interior post installation (post positioned inside the rim board, rim joist)
- Fastener position tolerance: ± 1/16"

For 42" Guard Post Height (above deck surface, refer to L-F-SDWS42GRD)

- Use Nominal 4" x 4" guard post
- Use Nominal 2" x 8" rim board/rim joist, 2x blocking and 4x blocking
- Framing lumber should be DFL (No. 2 grade, minimum) or SP (Construction grade, minimum), pressure treated with chemical retention not greater than UC4A
- Full-depth blocking required
- Interior post installation (post positioned inside the rim board, rim joist)
- Fastener position tolerance: ± 1/16"



Deck Construction – Guard Posts

Strong-Drive[®] SDWS **TIMBER** Screw for Guard Post Installations (cont.)

Plan View Showing Details of Four Guard Post Connections Using Strong-Drive SDWS Timber Screws

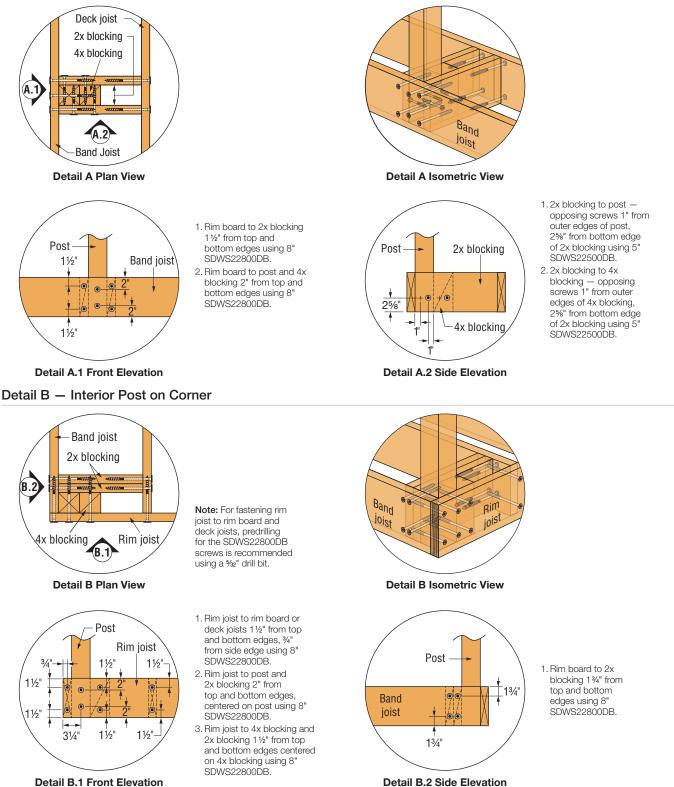
SDWS22DB Screw Information for Guard Post Details

Detail	Size (in.)	Model No.	Quantity Required
٨	0.220 x 5	SDWS22500DB	4
A	0.220 x 8	SDWS22800DB	10
В	0.220 x 8	SDWS22800DB	16
С	0.220 x 5	SDWS22500DB	8
U	0.220 x 8	SDWS22800DB	6
D	0.220 x 5	SDWS22500DB	8
U	0.220 x 8	SDWS22800DB	6

1. SDWS Timber screws install best with a low-speed ½" drill and a T-40 6-lobe bit. The matched bit included with the screws is recommended for best results.

2. Predrilling is typically not required. Where predrilling is necessary, use a 1/2" drill bit for Strong-Drive SDWS Timber screws.

3. Screw heads that are countersunk flush to the wood surface are acceptable if the screw has not spun out.

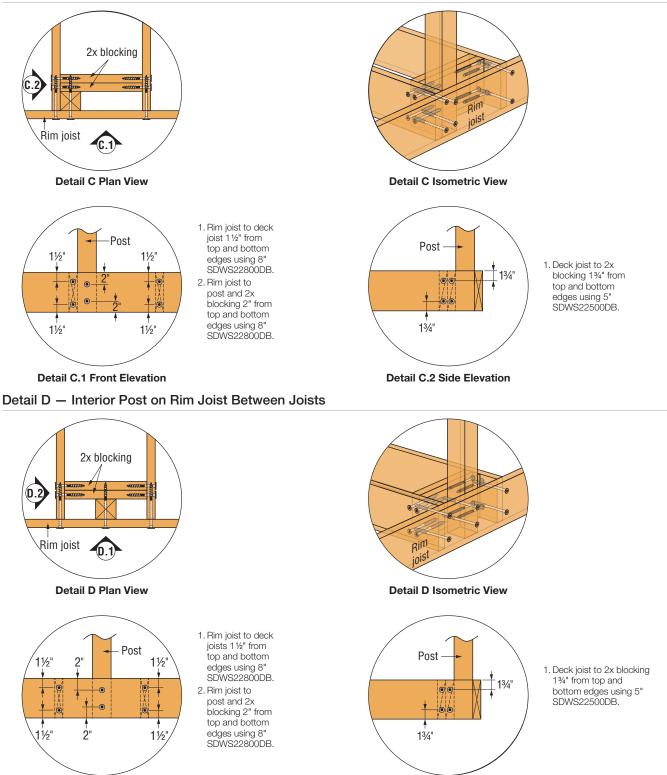

4. Deck joists shall be fastened to rim joist and ledger as required by the code. See p. 118 for rim joist connection.

Deck Applications

Deck Construction – Guard Posts

Strong-Drive[®] SDWS TIMBER Screw for Guard Post Installations (cont.)

Detail A - Interior Post on Rim Board


Detail B.2 Side Elevation

Deck Construction – Guard Posts

Strong-Drive° SDWS **TIMBER** Screw for Guard Post Installations (cont.)

Detail C - Interior Post on Rim Joist with Adjacent Joist

Detail D.2 Side Elevation